OFFSET
1,1
LINKS
Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
FORMULA
a(n) = Sum_{k=1..n} k*A108435(k).
a(n) = 2 + (1/n)*Sum_{j=0..n-2} (3n-j)*2^(n-j)*binomial(n, j)*binomial(2n, n-j-1)/(n+j+2).
G.f.: A^2-A, where A=1+zA^2+zA^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
D-finite with recurrence 3*(n+1)*(2*n+1)*a(n) +3*(-34*n^2+18*n-1)*a(n-1) +(394*n^2-1197*n+908)*a(n-2) +2*(-4*n^2+51*n-113)*a(n-3) -2*(2*n-7)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 24 2022
EXAMPLE
a(2)=14 because there are 10 paths from (0,0) to (6,0) (see A027307): u(d)u(d), u(d)Ud(d), uud(d), uUdd(d), Ud(d)u(d), Ud(d)Ud(d), Udud(d), UdUdd(d), Uudd(d) and UUddd(d), the fourteen returns to the x-axis being shown between parentheses.
MAPLE
a:=n->2+(1/n)*sum((3*n-j)*2^(n-j)*binomial(n, j)*binomial(2*n, n-j-1)/(n+j+2), j=0..n-2): seq(a(n), n=1..21);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 04 2005
STATUS
approved