login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103945
Number of rooted dual-unicursal n-edge maps in the plane (planar with a distinguished outside face).
1
2, 14, 107, 844, 6757, 54522, 441863, 3589880, 29206025, 237780982, 1936486411, 15771410420, 128431734797, 1045618229234, 8510270668815, 69241255165936, 563154350637073, 4578526894227438, 37209886138826771, 302291556342169580
OFFSET
1,1
REFERENCES
V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
LINKS
V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
FORMULA
a(n)=(n+2)*A069720(n)-A103944(n).
MATHEMATICA
A069720[n_] := 2^(n-1) Binomial[2n-1, n];
A103944[n_] := If[n == 1, 1, n Binomial[2n, n] Sum[Binomial[n-2, k] (1/(n + 1 + k) + n/(n + 2 + k)), {k, 0, n-2}]];
a[n_] := (n+2) A069720[n] - A103944[n];
Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)
CROSSREFS
Sequence in context: A074618 A108436 A088754 * A378460 A111713 A377103
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Mar 17 2005
STATUS
approved