login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rooted dual-unicursal n-edge maps in the plane (planar with a distinguished outside face).
1

%I #9 Aug 28 2019 12:40:18

%S 2,14,107,844,6757,54522,441863,3589880,29206025,237780982,1936486411,

%T 15771410420,128431734797,1045618229234,8510270668815,69241255165936,

%U 563154350637073,4578526894227438,37209886138826771,302291556342169580

%N Number of rooted dual-unicursal n-edge maps in the plane (planar with a distinguished outside face).

%D V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

%H V. A. Liskovets and T. R. Walsh, <a href="http://dx.doi.org/10.1016/j.aam.2005.03.006">Counting unrooted maps on the plane</a>, Advances in Applied Math., 36, No.4 (2006), 364-387.

%F a(n)=(n+2)*A069720(n)-A103944(n).

%t A069720[n_] := 2^(n-1) Binomial[2n-1, n];

%t A103944[n_] := If[n == 1, 1, n Binomial[2n, n] Sum[Binomial[n-2, k] (1/(n + 1 + k) + n/(n + 2 + k)), {k, 0, n-2}]];

%t a[n_] := (n+2) A069720[n] - A103944[n];

%t Array[a, 20] (* _Jean-François Alcover_, Aug 28 2019 *)

%Y Cf. A069720, A103944.

%K easy,nonn

%O 1,1

%A _Valery A. Liskovets_, Mar 17 2005