login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103944 Number of rooted unicursal n-edge maps in the plane (planar with a distinguished outside face). 2
1, 10, 93, 836, 7355, 63750, 546553, 4646920, 39250935, 329789450, 2758868981, 22995369996, 191074697203, 1583463268366, 13092015636465, 108024564809744, 889730213085167, 7316434446188562, 60078376613838829, 492692533579612180 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.

FORMULA

a(n)=n*binomial(2n, n)sum_{i=0..n-2} binomial(n-2, i)(1/(n+1+i)+n/(n+2+i)), for n>1.

Recurrence: (n-1)*a(n) = 3*(3*n-4)*a(n-1) - 6*(n-9)*a(n-2) - 8*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 17 2012

a(n) ~ 8^n*sqrt(n)/(6*sqrt(Pi)). - Vaclav Kotesovec, Oct 17 2012

MATHEMATICA

Flatten[{1, Table[n*Binomial[2n, n]*Sum[Binomial[n-2, k]*(1/(n+1+k)+n/(n+2+k)), {k, 0, n-2}], {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 17 2012 *)

CROSSREFS

Cf. A069720, A103945.

Sequence in context: A287829 A265242 A262173 * A190989 A224696 A099295

Adjacent sequences: A103941 A103942 A103943 * A103945 A103946 A103947

KEYWORD

easy,nonn

AUTHOR

Valery A. Liskovets, Mar 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 04:37 EST 2022. Contains 358431 sequences. (Running on oeis4.)