login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375246
Number of biquadratefree numbers <= 10^n.
2
1, 10, 93, 925, 9240, 92395, 923939, 9239385, 92393839, 923938406, 9239384029, 92393840300, 923938402926, 9239384029211, 92393840292169, 923938402921591, 9239384029215891, 92393840292159004, 923938402921590127, 9239384029215901651, 92393840292159016603
OFFSET
0,2
COMMENTS
Digits of terms converge to digits of 1/zeta(4) = 90/Pi^4 (A215267).
LINKS
FORMULA
a(n) = A375245(10^n).
PROG
(Python)
from sympy import mobius, integer_nthroot
def A375246(n): return int(sum(mobius(k)*(10**n//k**4) for k in range(1, integer_nthroot(10**n, 4)[0]+1)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Aug 07 2024
STATUS
approved