login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307430
Dirichlet g.f.: zeta(s) / zeta(4*s).
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1
OFFSET
1
COMMENTS
Dirichlet convolution of A227291 and A008966.
The characteristic function of the biquadratefree numbers (A046100). - Amiram Eldar, Dec 27 2022
LINKS
Vaclav Kotesovec, Graph - the asymptotic ratio.
Eric Weisstein's World of Mathematics, Dirichlet Generating Function.
Wikipedia, Dirichlet series.
FORMULA
Sum_{k=1..n} a(k) ~ 90*n/Pi^4.
Multiplicative with a(p^e) = 1 if e <= 3, and 0 otherwise. - Amiram Eldar, Dec 27 2022
MATHEMATICA
nmax = 100; A227291 = Abs[Table[DivisorSum[n, Abs[MoebiusMu[#]]*MoebiusMu[n/#] &], {n, 1, nmax}]]; Table[DivisorSum[n, Abs[MoebiusMu[n/#]] * A227291[[#]] &], {n, 1, nmax}]
a[n_] := If[Max[FactorInteger[n][[;; , 2]]] < 4, 1, 0]; Array[a, 100] (* Amiram Eldar, Dec 27 2022 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1-X^4)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
CROSSREFS
Cf. A008966, A046100, A212793, A219009 (Dirichlet inverse), A227291.
Sequence in context: A340369 A307445 A363552 * A053865 A189022 A370598
KEYWORD
nonn,mult
AUTHOR
Vaclav Kotesovec, Apr 08 2019
STATUS
approved