login
A307427
Dirichlet g.f.: zeta(3*s) / (zeta(s) * zeta(2*s)).
2
1, -1, -1, -1, -1, 1, -1, 2, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -2, -1, 1, 2, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -2, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -2, 1, -2, 1, 1, -1, -1, -1, 1, 1, 2, 1, -1, -1, 1, 1, -1, -1, -2, -1, 1
OFFSET
1,8
COMMENTS
Dirichlet convolution of A210826 and A271102.
Dirichlet convolution of A307424 and A008683.
LINKS
Eric Weisstein's World of Mathematics, Dirichlet Generating Function.
Wikipedia, Dirichlet series.
FORMULA
Multiplicative with a(p^e) = 2 if e == 0 (mod 3), and -1 otherwise. - Amiram Eldar, Dec 25 2022
MATHEMATICA
nmax = 100; A271102 = Table[DivisorSum[n, Abs[MoebiusMu[#]] * MoebiusMu[n/#] &], {n, 1, nmax}]; Table[DivisorSum[n, Mod[DivisorSigma[0, n/#], 3, -1] * A271102[[#]] &], {n, 1, nmax}]
nmax = 100; A307424 = Table[DivisorSum[n, Abs[MoebiusMu[#]] * Mod[DivisorSigma[0, n/#], 3, -1]&], {n, 1, nmax}]; Table[DivisorSum[n, MoebiusMu[#] * A307424[[n/#]] &], {n, 1, nmax}]
f[p_, e_] := If[Divisible[e, 3], 2, -1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 25 2022 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1-X)*(1-X^2)/(1-X^3))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
CROSSREFS
KEYWORD
sign,mult,changed
AUTHOR
Vaclav Kotesovec, Apr 08 2019
STATUS
approved