login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307428
Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(3*s)).
3
1, -1, -1, 1, -1, 1, -1, -2, 1, 1, -1, -1, -1, 1, 1, 2, -1, -1, -1, -1, 1, 1, -1, 2, 1, 1, -2, -1, -1, -1, -1, -2, 1, 1, 1, 1, -1, 1, 1, 2, -1, -1, -1, -1, -1, 1, -1, -2, 1, -1, 1, -1, -1, 2, 1, 2, 1, 1, -1, 1, -1, 1, -1, 2, 1, -1, -1, -1, 1, -1, -1, -2, -1
OFFSET
1,8
COMMENTS
Dirichlet convolution of A307423 and A008683.
LINKS
Eric Weisstein's World of Mathematics, Dirichlet Generating Function.
Wikipedia, Dirichlet series.
FORMULA
Multiplicative with a(p) = -1, a(p^2) = 1, and a(p^e) = 2*(-1)^e for e >= 3. - Amiram Eldar, Dec 25 2022
MATHEMATICA
nmax = 100; A307423 = Table[DivisorSum[n, Boole[Max[FactorInteger[#][[All, 2]]] < 3] * LiouvilleLambda[n/#]&], {n, 1, nmax}]; Table[DivisorSum[n, MoebiusMu[#] * A307423[[n/#]] &], {n, 1, nmax}]
f[p_, e_] := 2*(-1)^e; f[p_, 1] := -1; f[p_, 2] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 25 2022 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1-X^3)/(1+X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Vaclav Kotesovec, Apr 08 2019
STATUS
approved