OFFSET
1,9
COMMENTS
The length of the n-th row is n(n-1)/2 + 1, where n(n-1)/2 is the maximum Kendall tau distance distance for permutations of {1..n}.
LINKS
I. Unanue, M. Merino, and J. A. Lozano, A Mathematical Analysis of EDAs with Distance-based Exponential Models, Memetic Computing, 14 (2022), 305-334. Also on ResearchGate.
FORMULA
T(n,k) = Sum_{j=0..k} (-1)^j * S(n,k-j), where S(n,k) = A008302(n,k) is the number of permutations of {1..n} with k inversions.
EXAMPLE
Triangle begins:
1;
1, 0;
1, 1, 1, 0;
1, 2, 3, 3, 2, 1, 0;
1, 3, 6, 9, 11, 11, 9, 6, 3, 1, 0;
1, 4, 10, 19, 30, 41, 49, 52, 49, 41, 30, 19, 10, 4, 1, 0;
MATHEMATICA
T[n_] := Module[{polcoef, svalues = {}, si, j, k, c}, polcoef = CoefficientList[Series[QFactorial[n, c], {c, 0, n (n - 1)/2}], c]; For[j = 1, j <= Length[polcoef], j++, si = 0; For[k = 1, k <= j, k++, si = si + polcoef[[k]]*(-1)^(j - k)]; AppendTo[svalues, si]]; Return[svalues]]; Catenate[Table[T[n], {n, 1, 7}]]
PROG
(PARI) S(n, k) = my(A=1+x); for(i=1, n, A = 1 + intformal(A - q*subst(A, x, q*x +x^2*O(x^n)))/(1-q)); polcoeff(n!*polcoeff(A, n, x), k, q); \\ A008302
T(n, k) = sum(i=0, k, (-1)^(k-i)*S(n, i));
tabf(nn) = for (n=1, nn, for (k=0, n*(n-1)/2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 10 2019
(SageMath)
from sage.combinat.q_analogues import q_factorial
def A307429_row(n):
qf = q_factorial(n).list()
return [sum((-1)^(k-j)*qf[j] for j in range(k+1)) for k in range(n*(n-1)//2 + 1)]
for n in range(1, 7): print(A307429_row(n)) # Peter Luschny, Sep 01 2022
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Imanol Unanue, María Merino, Jose A. Lozano, Apr 08 2019
STATUS
approved