OFFSET
0,3
COMMENTS
If the least significant bit is numbered 0, then a(2n) = a(2n+1) if one uses the "natural" definition reading "...set in n": see A253315 for that version. To avoid the duplication, we chose here to start numbering the bits with 1 for the LSB; equivalently, we can start numbering the bits with 0 but use the definition "...bits set in 2n". In any case, a(n) = A253315(2n) = A253315(2n+1).
Since the XOR operation is associative, one can define XOR of an arbitrary number of terms in a recursive way, there is no ambiguity about the order in which the operations are performed.
LINKS
Philippe Beaudoin, Table of n, a(n) for n = 0..8190
Oliver Nash, Yet another prisoner puzzle, coins on a chessboard problem.
Tilman Piesk, Illustration of the first 128 terms
EXAMPLE
a(7) = a(4+2+1) = a(2^2+2^1+2^0) = (2+1) XOR (1+1) XOR (0+1) = 3 XOR 3 = 0.
a(12) = a(8+4) = a(2^3+2^2) = (3+1) XOR (2+1) = 4+3 = 7.
MATHEMATICA
A261283[n_] := If[n == 0, 0, BitXor @@ PositionIndex[Reverse[IntegerDigits[n, 2]]][1]]; Array[A261283, 100, 0] (* Paolo Xausa, May 29 2024 *)
PROG
(PARI) A261283(n, b=bittest(n, 0))={for(i=1, #binary(n), bittest(n, i)&&b=bitxor(b, i+1)); b}
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved