login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261285
Number of (n+2) X (1+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 00010101 or 01010101.
1
36, 50, 96, 166, 307, 540, 1015, 1786, 3304, 5862, 10877, 19316, 35609, 63526, 116992, 209094, 383787, 687684, 1260543, 2262114, 4138240, 7439142, 13591813, 24462924, 44638225, 80433102, 146628424, 264446262, 481653251, 869371260, 1582318631
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-2) + 2*a(n-3) + 4*a(n-4) + 3*a(n-6) - 8*a(n-7) + 9*a(n-8) - 6*a(n-9) - 4*a(n-10) - 4*a(n-11) - 4*a(n-12) for n>13.
Empirical g.f.: x*(36 + 50*x + 60*x^2 + 44*x^3 - 33*x^4 - 18*x^5 - 116*x^6 + 106*x^7 - 231*x^8 - 78*x^9 - 72*x^10 - 36*x^11 + 28*x^12) / (1 - x^2 - 2*x^3 - 4*x^4 - 3*x^6 + 8*x^7 - 9*x^8 + 6*x^9 + 4*x^10 + 4*x^11 + 4*x^12). - Colin Barker, Dec 30 2018
EXAMPLE
Some solutions for n=4:
..0..0..0....0..0..0....0..1..0....0..0..1....0..1..0....0..0..0....0..0..0
..1..0..1....1..0..0....0..0..1....0..0..0....1..0..1....0..1..0....1..0..1
..0..1..0....0..0..0....0..1..0....1..0..1....0..1..0....0..0..1....0..1..0
..1..0..0....0..0..0....1..0..1....0..1..0....0..0..1....0..1..0....0..0..1
..0..1..0....0..0..1....0..0..0....1..0..1....0..1..0....1..0..1....0..1..0
..0..0..0....0..0..0....0..0..1....0..1..0....0..0..0....0..0..0....1..0..1
CROSSREFS
Column 1 of A261292.
Sequence in context: A332287 A050691 A211720 * A261257 A188243 A335104
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 14 2015
STATUS
approved