The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253315 a(n) = bitwise XOR of all the bit numbers for the bits that are set in n. 4
 0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 6, 6, 5, 5, 4, 4, 5, 5, 4, 4, 7, 7, 6, 6, 6, 6, 7, 7, 4, 4, 5, 5, 1, 1, 0, 0, 3, 3, 2, 2, 2, 2, 3, 3, 0, 0, 1, 1, 6, 6, 7, 7, 4, 4, 5, 5, 5, 5, 4, 4, 7, 7, 6, 6, 2, 2, 3, 3, 0, 0, 1, 1, 1, 1, 0, 0, 3, 3, 2, 2, 3, 3, 2, 2, 1, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The least significant bit is numbered 0. For any x < 2^m, for any y < m, there exist x' < 2^m s.t. x' differs from x by a single bit and a(x') = y. Because of the above property, sequence a is a solution to the "coins on a chessboard" problem which states: given an 8x8 chessboard filled with coins randomly flipped "head" or "tail" and a cell number (from 0 to 63) find a way to communicate the cell number by flipping a single coin. See A261283(n) = a(2n) for the version where the terms are not duplicated, which is equivalent to number the bits starting with 1 for the LSB. - M. F. Hasler, Aug 14 2015 LINKS Philippe Beaudoin, Table of n, a(n) for n = 0..4095 O. Nash, Yet another prisoner puzzle, coins on a chessboard problem. FORMULA a(n) = f(0,0,n) where f(z,y,x) = if x = 0 then y else f (z+1) (y XOR (z * (x mod 2))) floor(x/2). - Reinhard Zumkeller, Jan 18 2015 EXAMPLE a(12) = a(0b1100) = XOR(2, 3) = XOR(0b10, 0b11) = 1, where the prefix "0b" means that the number is written in binary. MAPLE # requires Maple 12 or later b:= proc(n) local t, L, i;   L:= convert(n, base, 2);   t:= 0;   for i from 1 to nops(L) do if L[i]=1 then     t:= Bits:-Xor(t, i-1)   fi od;   t; end proc: seq(b(n), n=0..100); # Robert Israel, Dec 30 2014 MATHEMATICA a[n_] := BitXor @@ Flatten[Position[IntegerDigits[n, 2] // Reverse, 1] - 1]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 07 2015 *) PROG (Python) def a(n): ..r = 0 ..b = 0 ..while n > 0: ....if (n & 1): ......r = r ^ b ....b = b + 1 ....n = n >> 1 ..return r (Haskell) import Data.Bits (xor) a253315 :: Integer -> Integer a253315 = f 0 0 where    f _ y 0 = y    f z y x = f (z + 1) (y `xor` b * z) x' where (x', b) = divMod x 2 -- Reinhard Zumkeller, Jan 18 2015 (PARI) A253315(n, b=bittest(n, 1))={for(i=2, #binary(n), bittest(n, i)&&b=bitxor(b, i)); b} \\ M. F. Hasler, Aug 14 2015 CROSSREFS Sequence in context: A122462 A215406 A231717 * A334138 A210480 A321859 Adjacent sequences:  A253312 A253313 A253314 * A253316 A253317 A253318 KEYWORD nonn,base,easy AUTHOR Philippe Beaudoin, Dec 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 07:18 EDT 2021. Contains 346348 sequences. (Running on oeis4.)