login
A318672
Denominators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n.
4
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
OFFSET
1,8
COMMENTS
The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (possibly of A282446 and A318469).
LINKS
FORMULA
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A049599(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
a(n) = 2^A318673(n).
PROG
(PARI)
up_to = (2^16)+1;
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
A049599(n) = factorback(apply(e -> (1+numdiv(e)), factor(n)[, 2]));
v318671_62 = DirSqrt(vector(up_to, n, A049599(n)));
A318671(n) = numerator(v318671_62[n]);
A318672(n) = denominator(v318671_62[n]);
A318673(n) = valuation(A318672(n), 2);
CROSSREFS
Cf. A049599, A318671 (numerators), A318673.
Sequence in context: A365333 A295658 A307427 * A359910 A368168 A359411
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Sep 03 2018
STATUS
approved