This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307433 A special version of Pascal's triangle where only powers of 2 are permitted. 1
 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 4, 4, 1, 1, 1, 2, 1, 8, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 2, 1, 8, 8, 8, 8, 8, 1, 2, 1, 1, 1, 1, 1, 16, 16, 16, 16, 1, 1, 1, 1, 1, 2, 2, 2, 1, 32, 32, 32, 1, 2, 2, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS If the sum of the two numbers above in the triangular array is not a power of 2 (A000079), then a 1 is put in its place. The ones in the table form a Sierpinski gasket (A047999). Apparently, for any k > 0, the value 2^k first occurs on row A206332(k). From Bernard Schott, May 05 2019: (Start) For any m, at row 2^m - 1, there is only a string of 2^m times the number 1, then at row 2^(m+1) - 2, comes out for the first time and only once, the power of 2 equals to 2^(2^m-1). At row 2^(m+1) - 1, there are again 2^(m+1) times the number 1. This cycle can go on. Under, a part of this triangle between row 2^3 -1 and 2^4 - 2 that visualizes the explanations.                  1   1   1   1   1   1   1   1                    2   2   2   2   2   2   2                      4   4   4   4   4   4                        8   8   8   8   8                          16  16  16  16                            32  32  32                              64  64                                128   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 (End) LINKS Rémy Sigrist, Table of n, a(n) for n = 0..8255 (rows n = 0..127) Rémy Sigrist, Colored representation of the first 1024 rows (where the hue is function of log(T(n,k))) Rémy Sigrist, Colored representation of the first 1024 rows (where black pixels correspond to ones) EXAMPLE The triangle begins:                                 1                               1   1                             1   2   1                           1   1   1   1                         1   2   2   2   1                       1   1   4   4   1   1                     1   2   1   8   1   2   1                   1   1   1   1   1   1   1   1                 1   2   2   2   2   2   2   2   1               1   1   4   4   4   4   4   4   1   1             1   2   1   8   8   8   8   8   1   2   1           1   1   1   1  16  16  16  16   1   1   1   1         1   2   2   2   1  32  32  32   1   2   2   2   1       1   1   4   4   1   1  64  64   1   1   4   4   1   1     1   2   1   8   1   2   1  128  1   2   1   8   1   2   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 PROG (PARI) for (r=1, 13, apply(v -> print1 (v", "), row=vector(r, k, if (k==1 || k==r, 1, hammingweight(s=row[k-1]+row[k])==1, s, 1)))) CROSSREFS Cf. A000079, A007318, A047999, A206332, A307116 (analog with Fibonacci numbers). Sequence in context: A166279 A077478 A127836 * A245618 A228053 A031262 Adjacent sequences:  A307430 A307431 A307432 * A307434 A307435 A307436 KEYWORD nonn,tabl,look AUTHOR Rémy Sigrist, May 05 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 04:46 EDT 2019. Contains 328145 sequences. (Running on oeis4.)