login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166279
Triangle, read by rows: T(0,0) = 1, T(n,k) = T(n-1,k-1) (mod 2) + T(n-1,k) (mod 2), T(n,k) = 0 if k < 0 or k > n.
0
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 1
OFFSET
0,5
EXAMPLE
Triangle begins:
1,
1,1,
1,2,1,
1,1,1,1,
1,2,2,2,1,
1,1,0,0,1,1,
1,2,1,0,1,2,1,
1,1,1,1,1,1,1,1,
1,2,2,2,2,2,2,2,1,
1,1,0,0,0,0,0,0,1,1,
1,2,1,0,0,0,0,0,1,2,1,
1,1,1,1,0,0,0,0,1,1,1,1,
1,2,2,2,1,0,0,0,1,2,2,2,1,
1,1,0,0,1,1,0,0,1,1,0,0,1,1,
1,2,1,0,1,2,1,0,1,2,1,0,1,2,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1
PROG
(PARI) p = 2; s = 13; T=matrix(s, s); T[1, 1]=1; for(n=2, s, T[n, 1]=1; for(k=2, n, T[n, k]=T[n-1, k-1]%p+T[n-1, k]%p)); for(n=1, s, for(k=1, n, print1(T[n, k], ", ")))
CROSSREFS
A007318 (Pascal's triangle), A047999 (Sierpinski's triangle, Pascal's triangle mod 2).
Sequence in context: A030613 A025910 A002637 * A077478 A127836 A307433
KEYWORD
easy,nonn,tabl
AUTHOR
Gerald McGarvey, Oct 10 2009
STATUS
approved