login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166282
Matrix inverse of Sierpinski's triangle (A047999, Pascal's triangle mod 2).
1
1, -1, 1, -1, 0, 1, 1, -1, -1, 1, -1, 0, 0, 0, 1, 1, -1, 0, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 1, 1, -1, 0, 0, 0, 0, 1, -1, -1, 1, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
In absolute values equal to A047999. - M. F. Hasler, Jun 06 2016
EXAMPLE
Triangle begins:
1,
-1, 1,
-1, 0, 1,
1,-1,-1, 1,
-1, 0, 0, 0, 1,
1,-1, 0, 0,-1, 1,
1, 0,-1, 0,-1, 0, 1,
-1, 1, 1,-1, 1,-1,-1, 1,
-1, 0, 0, 0, 0, 0, 0, 0, 1,
1,-1, 0, 0, 0, 0, 0, 0,-1, 1,
1, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,
-1, 1, 1,-1, 0, 0, 0, 0, 1,-1,-1, 1,
1, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0, 1,
...
PROG
(PARI) p=2; s=13; P=matpascal(s); PM=matrix(s+1, s+1, n, k, P[n, k]%p); IPM = 1/PM;
for(n=1, s, for(k=1, n, print1(IPM[n, k], ", ")); print())
CROSSREFS
Sequence in context: A078556 A144093 A143200 * A047999 A323378 A054431
KEYWORD
easy,sign,tabl
AUTHOR
Gerald McGarvey, Oct 10 2009
STATUS
approved