login
A166282
Matrix inverse of Sierpinski's triangle (A047999, Pascal's triangle mod 2).
1
1, -1, 1, -1, 0, 1, 1, -1, -1, 1, -1, 0, 0, 0, 1, 1, -1, 0, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 1, 1, -1, 0, 0, 0, 0, 1, -1, -1, 1, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
In absolute values equal to A047999. - M. F. Hasler, Jun 06 2016
EXAMPLE
Triangle begins:
1,
-1, 1,
-1, 0, 1,
1,-1,-1, 1,
-1, 0, 0, 0, 1,
1,-1, 0, 0,-1, 1,
1, 0,-1, 0,-1, 0, 1,
-1, 1, 1,-1, 1,-1,-1, 1,
-1, 0, 0, 0, 0, 0, 0, 0, 1,
1,-1, 0, 0, 0, 0, 0, 0,-1, 1,
1, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,
-1, 1, 1,-1, 0, 0, 0, 0, 1,-1,-1, 1,
1, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0, 1,
...
PROG
(PARI) p=2; s=13; P=matpascal(s); PM=matrix(s+1, s+1, n, k, P[n, k]%p); IPM = 1/PM;
for(n=1, s, for(k=1, n, print1(IPM[n, k], ", ")); print())
CROSSREFS
Sequence in context: A078556 A144093 A143200 * A047999 A323378 A054431
KEYWORD
easy,sign,tabl
AUTHOR
Gerald McGarvey, Oct 10 2009
STATUS
approved