login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323378
Square array read by antidiagonals: T(n,k) = Kronecker symbol (-n/k), n >= 1, k >= 1.
0
1, 1, 1, 1, 0, -1, 1, -1, 1, 1, 1, 0, 0, 0, 1, 1, -1, -1, 1, -1, -1, 1, 0, 1, 0, -1, 0, -1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 0, -1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1
OFFSET
1,1
COMMENTS
If A215200 is arranged into a square array A215200(n,k) = kronecker symbol(n/k) with n >= 0, k >= 1, then this sequence gives the other half of the array.
Note that there is no such n such that the n-th row and the n-th column are the same.
LINKS
Eric Weisstein's World of Mathematics, Kronecker Symbol.
EXAMPLE
Table begins
1, 1, -1, 1, 1, -1, -1, 1, 1, 1, ... ((-1/k) = A034947)
1, 0, 1, 0, -1, 0, -1, 0, 1, 0, ... ((-2/k) = A188510)
1, -1, 0, 1, -1, 0, 1, -1, 0, 1, ... ((-3/k) = A102283)
1, 0, -1, 0, 1, 0, -1, 0, 1, 0, ... ((-4/k) = A101455)
1, -1, 1, 1, 0, -1, 1, -1, 1, 0, ... ((-5/k) = A226162)
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, ... ((-6/k) = A109017)
1, 1, -1, 1, -1, -1, 0, 1, 1, -1, ... ((-7/k) = A175629)
1, 0, 1, 0, -1, 0, -1, 0, 1, 0, ... ((-8/k) = A188510)
...
PROG
(PARI) T(n, k) = kronecker(-n, k)
CROSSREFS
Cf. A215200.
The first rows are listed in A034947, A188510, A102283, A101455, A226162, A109017, A175629, A188510, ...
Sequence in context: A143200 A166282 A047999 * A054431 A164381 A106470
KEYWORD
sign,tabl
AUTHOR
Jianing Song, Jan 12 2019
STATUS
approved