login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array read by antidiagonals: T(n,k) = Kronecker symbol (-n/k), n >= 1, k >= 1.
0

%I #17 Apr 21 2022 21:56:16

%S 1,1,1,1,0,-1,1,-1,1,1,1,0,0,0,1,1,-1,-1,1,-1,-1,1,0,1,0,-1,0,-1,1,1,

%T 0,1,1,0,-1,1,1,0,-1,0,0,0,1,0,1,1,1,1,1,1,-1,-1,-1,1,1,1,0,0,0,-1,0,

%U 1,0,0,0,-1,1,-1,-1,1,-1,-1,1,-1,1,1,1,-1

%N Square array read by antidiagonals: T(n,k) = Kronecker symbol (-n/k), n >= 1, k >= 1.

%C If A215200 is arranged into a square array A215200(n,k) = kronecker symbol(n/k) with n >= 0, k >= 1, then this sequence gives the other half of the array.

%C Note that there is no such n such that the n-th row and the n-th column are the same.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KroneckerSymbol.html">Kronecker Symbol</a>.

%e Table begins

%e 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, ... ((-1/k) = A034947)

%e 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, ... ((-2/k) = A188510)

%e 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, ... ((-3/k) = A102283)

%e 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, ... ((-4/k) = A101455)

%e 1, -1, 1, 1, 0, -1, 1, -1, 1, 0, ... ((-5/k) = A226162)

%e 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, ... ((-6/k) = A109017)

%e 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, ... ((-7/k) = A175629)

%e 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, ... ((-8/k) = A188510)

%e ...

%o (PARI) T(n,k) = kronecker(-n, k)

%Y Cf. A215200.

%Y The first rows are listed in A034947, A188510, A102283, A101455, A226162, A109017, A175629, A188510, ...

%K sign,tabl

%O 1,1

%A _Jianing Song_, Jan 12 2019