OFFSET
1,1
COMMENTS
Array is read along (x, y) = (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), ...
There are nontrivial infinite paths of 1's in this sequence, moving only 1 step down or to the right at each step. Starting at (1,1), move down to (2,1), then (3,1), ..., (13,1). Then move right to (13,2), (13,3), ..., (13,11). From this point, alternate moving down to the next prime row, and right to the next prime column. - Franklin T. Adams-Watters, May 27 2014
FORMULA
T(n, k) = T(n, k-n) + T(n-k, k) starting with T(n, k)=0 if n or k are nonpositive and T(1, 1)=1. T(n, k) = A054521(n, k) if n>=k, = A054521(k, n) if n<=k. Antidiagonal sums are phi(n) = A000010(n). - Henry Bottomley, May 14 2002
As a triangular array for n>=1, 1<=k<=n, T(n,k) = |K(n-k+1|k)| where K(i|j) is the Kronecker symbol. - Peter Luschny, Aug 05 2012
Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} [gcd(n,k)=1]/n^s/k^c = zeta(s)*zeta(c)/zeta(s + c). - Mats Granvik, May 19 2021
EXAMPLE
Rows start:
1, 1, 1, 1, 1, 1, ...;
1, 0, 1, 0, 1, 0, ...;
1, 1, 0, 1, 1, 0, ...;
1, 0, 1, 0, 1, 0, ...;
1, 1, 1, 1, 0, 1, ...;
1, 0, 0, 0, 1, 0, ...;
MAPLE
reduced_residue_set_0_1_array := n -> one_or_zero(igcd(((n-((trinv(n)*(trinv(n)-1))/2))+1), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) ));
one_or_zero := n -> `if`((1 = n), (1), (0)); # trinv given at A054425
A054431_row := n -> seq(abs(numtheory[jacobi](n-k+1, k)), k=1..n);
for n from 1 to 14 do A054431_row(n) od; # Peter Luschny, Aug 05 2012
MATHEMATICA
t[n_, k_] := Boole[CoprimeQ[n, k]]; Table[t[n-k+1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 21 2012 *)
PROG
(Sage)
def A054431_row(n): return [abs(kronecker_symbol(n-k+1, k)) for k in (1..n)]
for n in (1..14): print(A054431_row(n)) # Peter Luschny, Aug 05 2012
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved