|
|
A054431
|
|
Array read by antidiagonals: T(x, y) tells whether (x, y) are coprime (1) or not (0).
|
|
17
|
|
|
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Array is read along (x, y) = (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), ...
There are nontrivial infinite paths of 1's in this sequence, moving only 1 step down or to the right at each step. Starting at (1,1), move down to (2,1), then (3,1), ..., (13,1). Then move right to (13,2), (13,3), ..., (13,11). From this point, alternate moving down to the next prime row, and right to the next prime column. - Franklin T. Adams-Watters, May 27 2014
|
|
LINKS
|
Table of n, a(n) for n=1..105.
|
|
FORMULA
|
T(n, k) = T(n, k-n) + T(n-k, k) starting with T(n, k)=0 if n or k are nonpositive and T(1, 1)=1. T(n, k) = A054521(n, k) if n>=k, = A054521(k, n) if n<=k. Antidiagonal sums are phi(n) = A000010(n). - Henry Bottomley, May 14 2002
As a triangular array for n>=1, 1<=k<=n, T(n,k) = |K(n-k+1|k)| where K(i|j) is the Kronecker symbol. - Peter Luschny, Aug 05 2012
Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} [gcd(n,k)=1]/n^s/k^c = zeta(s)*zeta(c)/zeta(s + c). - Mats Granvik, May 19 2021
|
|
EXAMPLE
|
Rows start:
1, 1, 1, 1, 1, 1, ...;
1, 0, 1, 0, 1, 0, ...;
1, 1, 0, 1, 1, 0, ...;
1, 0, 1, 0, 1, 0, ...;
1, 1, 1, 1, 0, 1, ...;
1, 0, 0, 0, 1, 0, ...;
|
|
MAPLE
|
reduced_residue_set_0_1_array := n -> one_or_zero(igcd(((n-((trinv(n)*(trinv(n)-1))/2))+1), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) ));
one_or_zero := n -> `if`((1 = n), (1), (0)); # trinv given at A054425
A054431_row := n -> seq(abs(numtheory[jacobi](n-k+1, k)), k=1..n);
for n from 1 to 14 do A054431_row(n) od; # Peter Luschny, Aug 05 2012
|
|
MATHEMATICA
|
t[n_, k_] := Boole[CoprimeQ[n, k]]; Table[t[n-k+1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 21 2012 *)
|
|
PROG
|
(Sage)
def A054431_row(n): return [abs(kronecker_symbol(n-k+1, k)) for k in (1..n)]
for n in (1..14): print(A054431_row(n)) # Peter Luschny, Aug 05 2012
|
|
CROSSREFS
|
Equal to A003989 with non-one values replaced with zeros.
Cf. A047999, A054432, A055088, A054521, A215200.
Sequence in context: A166282 A047999 A323378 * A164381 A106470 A106465
Adjacent sequences: A054428 A054429 A054430 * A054432 A054433 A054434
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Antti Karttunen
|
|
STATUS
|
approved
|
|
|
|