login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A106465
Triangle read by rows, T(n, k) = 1 if n mod 2 = 1, otherwise (k + 1) mod 2.
6
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,1
COMMENTS
Rows alternate between all 1's and alternating 1's and 0's. A 'mixed' sequence array: rows alternate between the rows of the sequence array for the all 1's sequence and the sequence array for the sequence 1,0,1,0,...
Column 2*k has g.f. x^(2*k)/(1-x); column 2*k+1 has g.f. x^(2*k+1)/(1-x^2).
Row sums are A029578(n+2). Antidiagonal sums are A106466.
This triangle is the Kronecker product of an infinite lower triangular matrix filled with 1's with a 2 X 2 lower triangular matrix of 1's. - Christopher Cormier, Sep 24 2017
From Peter Bala, Aug 21 2021: (Start)
Using the notation of Davenport et al.:
This is the double Riordan array ( 1/(1 - x); x/(1 + x), x*(1 + x) ).
The inverse array equals ( (1 - x)*(1 - x^2); x*(1 - x), x*(1 + x) ).
They are examples of double Riordan arrays of the form (g(x); x*f_1(x), x*f_2(x)), where f_1(x)*f_2(x) = 1. Arrays of this type form a group under matrix multiplication. For the group law see the Bala link. (End)
LINKS
D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012).
FORMULA
If gcd(n - k + 1, k + 1) mod 2 = 0 then T(n, k) = 0, otherwise T(n, k) = 1.
T(n, k) = A003989(n + 1, k + 1) mod 2.
T(n, k) = binomial(n mod 2, k mod 2). - Peter Luschny, Dec 12 2022
EXAMPLE
The triangle begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
---+------------------------------------------------
0 | 1
1 | 1 1
2 | 1 0 1
3 | 1 1 1 1
4 | 1 0 1 0 1
5 | 1 1 1 1 1 1
6 | 1 0 1 0 1 0 1
7 | 1 1 1 1 1 1 1 1
8 | 1 0 1 0 1 0 1 0 1
9 | 1 1 1 1 1 1 1 1 1 1
10 | 1 0 1 0 1 0 1 0 1 0 1
11 | 1 1 1 1 1 1 1 1 1 1 1 1
12 | 1 0 1 0 1 0 1 0 1 0 1 0 1
13 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
... Reformatted by Wolfdieter Lang, May 12 2018
Inverse array begins
n\k| 0 1 2 3 4 5 6 7
---+-------------------------------
0 | 1
1 | -1 1
2 | -1 0 1
3 | 1 -1 -1 1
4 | 0 0 -1 0 1
5 | 0 0 1 -1 -1 1
6 | 0 0 0 0 -1 0 1
7 | 0 0 0 0 1 -1 -1 1
... - Peter Bala, Aug 21 2021
MAPLE
T := (n, k) -> if igcd(n - k + 1, k + 1) mod 2 = 0 then 0 else 1 fi:
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Alternative:
T := (n, k) -> if n mod 2 = 1 then 1 else (k + 1) mod 2 fi:
for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Dec 12 2022
MATHEMATICA
Table[Binomial[Mod[n, 2], Mod[k, 2]], {n, 0, 16}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 12 2022 *)
PROG
(Python)
def A106465row(n: int) -> list[int]:
if n % 2 == 1:
return [1] * (n + 1)
return [1, 0] * (n // 2) + [1]
for n in range(9): print(A106465row(n)) # Peter Luschny, Dec 12 2022
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 03 2005
EXTENSIONS
Edited and new name by Peter Luschny, Dec 12 2022
STATUS
approved