Matrices with repeated columns - the generalised Appell groups

Peter Bala, Sep 082021

1.1 The Appell group. Let $G(x)=1+g_{1} x+g_{2} x^{2}+\cdots$ be an ordinary generating function (OGF) and consider the associated lower unitriangular array

$$
\left(\begin{array}{cccc}
1 & & & \\
g_{1} & 1 & & \\
g_{2} & g_{1} & 1 & \\
g_{3} & g_{2} & g_{1} & \ddots \\
\vdots & g_{3} & g_{2} & \ddots \\
& \vdots & g_{3} & \ddots \\
& & \vdots & \ddots
\end{array}\right)
$$

having one repeated column formed from the coefficients of $G(x)$. The sequence of column OGFs of the array is

$$
\left(G, x G, x^{2} G, x^{3} G, \cdots\right)
$$

In the language of Riordan arrays this array is denoted by $(G(x), x)$. The set of Riordan arrays of this type form an abelian group under matrix multiplication called the (ordinary) Appell group [1, Section 3]. The group multiplication law is

$$
(G(x), x) *(F(x), x)=(G(x) F(x), x)
$$

with the group inverse

$$
(G(x), x)^{-1}=\left(\frac{1}{G(x)}, x\right)
$$

The purpose of these notes is to generalise the Appell group by considering lower unitriangular matrices with n repeating columns.
1.2 The generalised Appell groups. Let $G_{i}, i=0 . . n-1$, be n power series, all with constant term 1. We shall use the double round brackets notation $\left(\left(G_{0}, G_{1}, \cdots, G_{n-1}\right)\right)$ to denote the lower unitriangular array with column generating functions

$$
\left(G_{0}, x G_{1}, \cdots, x^{n-1} G_{n-1}, x^{n} G_{0}, x^{n+1} G_{1}, \cdots, x^{2 n-1} G_{n-1}, \cdots\right)
$$

We denote the set of arrays of this type by \mathcal{A}_{n}.

Example 1. The array $\left(\left(\frac{1}{1-x}, \frac{1}{(1-x)^{2}}, \frac{1}{(1-x)^{3}}\right)\right)$ in \mathcal{A}_{3} begins

$$
\left(\begin{array}{cccccccccc}
1 & & & & & & & & & \\
1 & 1 & & & & & & & & \\
1 & 2 & 1 & & & & & & & \\
1 & 3 & 3 & 1 & & & & & & \\
1 & 4 & 6 & 1 & 1 & & & & & \\
1 & 5 & 10 & 1 & 2 & 1 & & & & \\
\vdots & \vdots & \vdots & 1 & 3 & 3 & 1 & & & \\
& & & 1 & 4 & 6 & 1 & 1 & & \\
& & & 1 & 5 & 10 & 1 & 2 & 1 & \\
& & & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

with its first three columns repeated.

Clearly, \mathcal{A}_{1} is the Appell group. In terms of the double bracket notation, the group operations in \mathcal{A}_{1} read as

$$
\begin{aligned}
& ((G))((F))=((G F)) \\
& ((G))^{-1}=\left(\left(\frac{1}{G}\right)\right)
\end{aligned}
$$

The Appell group \mathcal{A}_{1} is contained in the set \mathcal{A}_{n} for all n. More generally, if n divides m then \mathcal{A}_{n} is contained in \mathcal{A}_{m}.

It is not difficult to show that \mathcal{A}_{n} is a group for $n>1$. We prove this in the next section for the case $n=2$; the proof can easily be extended to the general case. We expect this simple result is somewhere in the literature but a quick internet search didn't find anything relevant, hence these notes. It seems reasonable to refer to the groups \mathcal{A}_{n} as generalised Appell groups.

1.3 The group \mathcal{A}_{2}

We have

$$
\mathcal{A}_{2}=\left\{((G, F)) \mid G(x)=1+\sum_{k=1}^{\infty} g_{k} x^{k}, F(x)=1+\sum_{k=1}^{\infty} f_{k} x^{k}\right\}
$$

A typical element $((G, F))$ of \mathcal{A}_{2} begins

$$
\left(\begin{array}{cccccc}
1 & & & & & \\
g_{1} & 1 & & & & \\
g_{2} & f_{1} & 1 & & & \\
g_{3} & f_{2} & g_{1} & 1 & & \\
\vdots & f_{3} & g_{2} & f_{1} & 1 & \\
& \vdots & g_{3} & f_{2} & \vdots & \ddots \\
& & \vdots & f_{3} & & \\
& & & \vdots & &
\end{array}\right)
$$

with its first two columns repeated. Clearly, the identity element $((1,1)) \in \mathcal{A}_{2}$. Arrays in \mathcal{A}_{2} are examples of double Riordan arrays introduced in [1]. In the notation of that paper, our array $((G, F))$ is the double Riordan array $\left(G ; x \frac{F}{G}, x^{2} \frac{G}{F}\right)$.

It will be convenient in what follows to denote the even and odd parts of a power series $f(x)$ by $f_{\text {even }}$ and $f_{\text {odd }}$:

$$
f_{\text {even }}=\frac{f(x)+f(-x)}{2}, f_{\text {odd }}=\frac{f(x)-f(-x)}{2} .
$$

Theorem 1 (i) The set of lower unitriangular arrays \mathcal{A}_{2} forms a group under the associative operation of matrix multiplication. The multiplication operation is given by

$$
\begin{equation*}
((g, f))((G, F))=\left(\left(g G_{\text {even }}+f G_{\text {odd }}, f F_{\text {even }}+g F_{\text {odd }}\right)\right) . \tag{1}
\end{equation*}
$$

Equivalently,

$$
((g, f))((G, F))=\left(\left(h_{1}, h_{2}\right)\right)
$$

where

$$
\binom{h_{1}}{h_{2}}=\left(\begin{array}{cc}
G_{\text {even }} & G_{\text {odd }} \tag{2}\\
F_{\text {odd }} & F_{\text {even }}
\end{array}\right)\binom{g}{f}
$$

(ii) the inverse of the array $((G, F))$ belongs to \mathcal{A}_{2} and is given by

$$
\begin{equation*}
((G, F))^{-1}=\left(\left(\frac{F_{\text {even }}-G_{\text {odd }}}{\triangle}, \frac{G_{\text {even }}-F_{\text {odd }}}{\triangle}\right)\right) \tag{3}
\end{equation*}
$$

where $\triangle(x)=(G(x) F(-x)+F(x) G(-x)) / 2$.

Proof. Consider the action of the array $((g, f))$ on column vectors. Suppose that $A=\left(a_{0}, a_{1}, \ldots\right)^{\mathrm{T}}$ and $B=\left(b_{0}, b_{1}, \ldots\right)^{\mathrm{T}}$ are column vectors with OGFs $A(x)$ and $B(x)$. Then

$$
((g, f)) A=\left(\begin{array}{ccccc}
\uparrow & 0 & 0 & 0 & \cdots \\
& \uparrow & 0 & 0 & \cdots \\
& & \uparrow & 0 & \cdots \\
& & & \uparrow & \\
g & f & g & f & \ddots \\
\downarrow & \downarrow & \downarrow & \downarrow &
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
\\
\\
\\
\\
\vdots \\
b_{1} \\
\end{array}\right)
$$

if and only if

$$
\begin{align*}
B(x) & =a_{0} g(x)+a_{1} x f(x)+a_{2} x^{2} g(x)+a_{3} x^{3} f(x)+\cdots \\
& =g(x)\left(a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots\right)+f(x)\left(a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\cdots\right) \\
& =g(x) A_{\text {even }}(x)+f(x) A_{\text {odd }}(x) \tag{4}
\end{align*}
$$

With a small abuse of notation we can rewrite (4) as

$$
\begin{equation*}
B(x)=((g, f)) * A(x)=g(x) A_{\text {even }}(x)+f(x) A_{\text {odd }}(x) \tag{5}
\end{equation*}
$$

Now consider the matrix product $((g, f))((G, F))$ of two elements of \mathcal{A}_{2}. Since the first column of the array $((G, F))$ has the generating function $G(x)$, it follows from (4) that the first column of the product $((g, f))((G, F))$ has the generating function $g G_{\text {even }}+f G_{\text {odd }}$. To identify the generating functions of the other columns of the matrix product observe that

$$
\begin{aligned}
((g, f)) & =\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots \\
g_{1} & & & ((f, g)) & \\
g_{2} & & & ((, g) & \\
\vdots & \vdots & &
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots \\
g_{1} & 1 & 0 & 0 & \cdots \\
\hline g_{2} & f_{1} & & & \\
\vdots & f_{2} & \mid & ((g, f)) & \\
& \vdots & \mid l & \\
& & \mid &
\end{array}\right) \\
& =\cdots
\end{aligned}
$$

We see that the action of the array $((g, f))$ on the second column of the array $((G, F))$ is obtained from the action of the array $((f, g))$ on the column
vector of coefficients of the power series F. Hence by (4), the second column of the product $((g, f))((G, F))$ has the generating function $f F_{\text {even }}+g F_{\text {odd }}$ (shifted by a factor of x).

Continuing in this way, we find that the even-indexed columns of the product $((g, f))((G, F))$ have the generating function $g G_{\text {even }}+f G_{\text {odd }}$ (shifted by some power of x), while the odd-indexed columns of the product have the generating function $f F_{\text {even }}+g F_{\text {odd }}$ (again shifted by some power of x).

Therefore, in terms of the double bracket notation, we have shown that

$$
((g, f))((G, F))=\left(\left(g G_{\text {even }}+f G_{\text {odd },} f F_{\text {even }}+g F_{\text {odd }}\right)\right)
$$

ii) To show that the inverse of $((G, F)) \in \mathcal{A}_{2}$ also lies in \mathcal{A}_{2} we need to find power series g and f such that $((g, f))((G, F))=((1,1))$. By (2), this is equivalent to solving

$$
\binom{1}{1}=\left(\begin{array}{cc}
G_{\text {even }} & G_{\text {odd }} \tag{6}\\
F_{\text {odd }} & F_{\text {even }}
\end{array}\right)\binom{g}{f}
$$

The determinant $\triangle=G_{\text {even }} F_{\text {even }}-G_{\text {odd }} F_{\text {odd }}$ of the 2×2 array in (6) simplifies to $\triangle(x)=(G(x) F(-x)+F(x) G(-x)) / 2$. Note that $\triangle \neq 0$ since $\triangle(0)=2 F(0) G(0) / 2=1$. Hence (6) has the solution

$$
g=\frac{F_{\text {even }}-G_{\text {odd }}}{\triangle}, \quad f=\frac{G_{\text {even }}-F_{\text {odd }}}{\triangle}
$$

such that

$$
((G, F))^{-1}=((g, f))=\left(\left(\frac{F_{\text {even }}-G_{\text {odd }}}{\triangle}, \frac{G_{\text {even }}-F_{\text {odd }}}{\triangle}\right)\right) \in \mathcal{A}_{2}
$$

Examples of triangles in the OEIS in \mathcal{A}_{2} include A070909 $=\left(\left(\frac{1}{1-x}, 1\right)\right)$, A106465 $=\left(\left(\frac{1}{1-x}, \frac{1}{1-x^{2}}\right)\right), \quad$ A177990 $=\left(\left(1, \frac{1}{1-x}\right)\right)$ and A177994 $=$ $\left(\left(\frac{1}{(1-x)\left(1-x^{2}\right)}, \frac{1}{1-x}\right)\right)$.

As previously remarked, it is not difficult to extend the above proof that \mathcal{A}_{2} is a group to show that \mathcal{A}_{n} is a group for $n>2$. As an example, the multiplication rule in \mathcal{A}_{3} is given by

$$
\left(\left(G_{1}, G_{2}, G_{3}\right)\right)\left(\left(F_{1}, F_{2}, F_{3}\right)\right)=\left(\left(h_{1}, h_{2}, h_{3}\right)\right)
$$

where

$$
\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=\left(\begin{array}{lll}
F_{1}^{(0)} & F_{1}^{(1)} & F_{1}^{(2)} \\
F_{2}^{(2)} & F_{2}^{(0)} & F_{2}^{(1)} \\
F_{3}^{(1)} & F_{3}^{(2)} & F_{3}^{(0)}
\end{array}\right)\left(\begin{array}{l}
G_{1} \\
G_{2} \\
G_{3}
\end{array}\right)
$$

and $F^{(0)}, F^{(1)}$ and $F^{(2)}$ denote the trisections of a power series
$F(x)=\sum_{k=0}^{\infty} f_{k} x^{k}$ defined as $F^{(0)}(x)=\sum_{k=0}^{\infty} f_{3 k} x^{3 k}, F^{(1)}(x)=\sum_{k=0}^{\infty} f_{3 k+1} x^{3 k+1}$
and $F^{(2)}(x)=\sum_{k=0}^{\infty} f_{3 k+2} x^{3 k+2}$.

We note one property of the group \mathcal{A}_{3} : every element $\left(\left(G_{1}, G_{2}, G_{3}\right)\right)$ in \mathcal{A}_{3} factorises as $\left(\left(G_{1}, G_{2}, G_{3}\right)\right)=\left(\left(F_{1}, 1,1\right)\right)\left(\left(1, F_{2}, 1\right)\right)\left(\left(1,1, F_{3}\right)\right)$ for some uniquely determined power series F_{1}, F_{2} and F_{3}.
1.4 Remarks. The following are easy consequences of Theorem 1.
1.4.1 For elements $((f, f))$ of the Appell group \mathcal{A}_{1} sitting inside the group \mathcal{A}_{2} we have

$$
((f, f))((G, F))=((f G, f F))
$$

1.4.2 The set of arrays of the form $((g(x), g(-x)))$ is an abelian subgroup of \mathcal{A}_{2} with the multiplication operation

$$
((g(x), g(-x)))((G(x), G(-x)))=((h(x), h(-x)))
$$

where

$$
h(x)=G_{\text {even }}(x) g(x)+G_{\text {odd }}(x) g(-x)
$$

1.4.3 The set of arrays of the form $\left(\left(g_{\text {even }}, \frac{1}{g_{\text {even }}}\right)\right)$ is an abelian subgroup of \mathcal{A}_{2} with the multiplication operation

$$
\left(\left(g_{\text {even }}, \frac{1}{g_{\text {even }}}\right)\right)\left(\left(G_{\text {even }}, \frac{1}{G_{\text {even }}}\right)\right)=\left(\left(g_{\text {even }} G_{\text {even }}, \frac{1}{g_{\text {even }} G_{\text {even }}}\right)\right)
$$

1.4.4 (i) The set of arrays of the form $\left(\left(g_{\text {even }}, f\right)\right)$ is a subgroup of \mathcal{A}_{2} with the multiplication operation

$$
\left(\left(g_{\text {even }}, f\right)\right)\left(\left(G_{\text {even }}, F\right)\right)=\left(\left(g_{\text {even }} G_{\text {even }}, g_{\text {even }} F_{\text {odd }}+f F_{\text {even }}\right)\right)
$$

(ii) The set of arrays of the form $\left(\left(g, f_{\text {even }}\right)\right)$ is a subgroup of \mathcal{A}_{2} with the multiplication operation

$$
\left(\left(g, f_{\text {even }}\right)\right)\left(\left(G, F_{\text {even }}\right)\right)=\left(\left(g G_{\text {even }}+f_{\text {even }} G_{\text {odd }}, f_{\text {even }} F_{\text {even }}\right)\right)
$$

1.4.5 (i) The set of arrays of the form $((g, 1))$ is a subgroup of \mathcal{A}_{2} with the multiplication operation

$$
((g, 1))((G, 1))=\left(\left(g G_{\text {even }}+G_{\text {odd }}, 1\right)\right)
$$

and inverse operation

$$
((g, 1))^{-1}=\left(\left(\frac{1-g_{\text {odd }}}{g_{\text {even }}}, 1\right)\right)
$$

(ii) The set of arrays of the form $((1, f))$ is a subgroup of \mathcal{A}_{2} with the multiplication operation

$$
((1, f))((1, F))=\left(\left(1, f F_{\text {even }}+F_{\text {odd }}\right)\right)
$$

and inverse operation

$$
((1, f))^{-1}=\left(\left(1, \frac{1-f_{\text {odd }}}{f_{\text {even }}}\right)\right)
$$

1.4.6 (i) Let $((G, F))) \in \mathcal{A}_{2}$. There exists unique power series g and f given by $g=G$, and $f=F_{\text {even }}+\frac{\left(1-G_{\text {odd }}\right)}{G_{\text {even }}} F_{\text {odd }}$ such that the array $((G, F))$ factorises as

$$
((G, F))=((g, 1))((1, f))
$$

(ii) Let $((G, F))) \in \mathcal{A}_{2}$. There exists unique power series g and f given by and $g=G_{\text {even }}+\frac{\left(1-F_{\text {odd }}\right)}{F_{\text {even }}} G_{o d d}$ and $f=F$ such that the array $((G, F))$ factorises as

$$
((G, F))=((1, f))((g, 1))
$$

1.4.7 The operator ${ }^{*}$ defined on the group \mathcal{A}_{2} by $((g, f))^{*}=((f, g))$ is an involutive automorphism of \mathcal{A}_{2}. We have

$$
\begin{gathered}
((g, f))((g, f))^{*}=((1,1)) \\
\Longleftrightarrow f=\frac{1-g_{\text {odd }} g}{g_{\text {even }}} \Longleftrightarrow g=\frac{1-f_{\text {odd }} f}{f_{\text {even }}} .
\end{gathered}
$$

2.1 The exponential Appell group Most of the results in the previous sections can be generalised by working with exponential generating functions rather than ordinary generating functions.

Let $G(x)=1+g_{1} x+g_{2} \frac{x^{2}}{2!}+g_{3} \frac{x^{3}}{3!}+\cdots$ be an exponential generating function (EGF). We denote by $[[G]]$ the lower unitriangular array whose k-th column, $k=0,1,2, \ldots$, has the EGF $\frac{x^{k}}{k!} G$. The array begins

$$
\left(\begin{array}{ccccccc}
1 & & & & & & \tag{7}\\
g_{1} & 1 & & & & & \\
g_{2} & 2 g_{1} & 1 & & & & \\
g_{3} & 3 g_{2} & 3 g_{1} & 1 & & & \\
g_{4} & 4 g_{3} & 6 g_{2} & 4 g_{1} & 1 & & \\
g_{5} & 5 g_{4} & 10 g_{3} & 10 g_{2} & 5 g_{1} & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right) .
$$

The set of arrays of this type forms an abelian group under matrix multiplication called the exponential Appell group, which we denote by $\widetilde{\mathcal{A}}_{1}$.

Example 2. The array $[[\exp (x)]]$ is Pascal's triangle.
If we define the Hadamard product of arrays $\left(a_{i j}\right)$ and $\left(b_{i j}\right)$ - denoted by $\left(a_{i j}\right)$ $\times_{H}\left(b_{i j}\right)$ - to be the array $\left(a_{i j} b_{i j}\right)$ then (7) is equal to the Hadamard product of Pascal's triangle with an element of the (ordinary) Appell group \mathcal{A}_{1} :

$$
\left(\begin{array}{cccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 2 & 1 & & & \\
1 & 3 & 3 & 1 & & \\
1 & 4 & 6 & 4 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \times\left(\begin{array}{ccccccc}
1 & & & & & \\
g_{1} & 1 & & & & \\
g_{2} & g_{1} & 1 & & & \\
g_{3} & g_{2} & g_{1} & 1 & & \\
g_{4} & g_{3} & g_{2} & g_{1} & 1 & \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & & & & & \\
g_{1} & 1 & & & & \\
g_{2} & 2 g_{1} & 1 & & & \\
g_{3} & 3 g_{2} & 3 g_{1} & 1 & & \\
g_{4} & 4 g_{3} & 6 g_{2} & 4 g_{1} & 1 & \\
& & & & & & \\
& & & & & \ddots & \ddots
\end{array}\right) .
$$

2.2 The generalised exponential Appell group $\widetilde{\mathcal{A}}_{2}$. We associate to each pair of EGFs $G(x)=1+g_{1} x+g_{2} \frac{x^{2}}{2!}+g_{3} \frac{x^{3}}{3!}+\cdots$ and $F(x)=1+f_{1} x+$ $f_{2} \frac{x^{2}}{2!}+f_{3} \frac{x^{3}}{3!}+\cdots$ a lower unitriangular array, denoted by $[[G, F]]$, whose sequence of column EGFs is given by

$$
\left(G, x F, \frac{x^{2}}{2!} G, \frac{x^{3}}{3!} F, \frac{x^{4}}{4!} G, \frac{x^{5}}{5!} F, \cdots\right) .
$$

We denote the set of all arrays of this type by $\widetilde{\mathcal{A}}_{2}$. Clearly the exponential Appell group $\widetilde{\mathcal{A}}_{1}$ is contained in $\widetilde{\mathcal{A}}_{2}$.

The array $[[G, F]]$ in $\widetilde{\mathcal{A}}_{2}$ begins

$$
\left(\begin{array}{ccccccc}
1 & & & & & & \tag{8}\\
g_{1} & 1 & & & & & \\
g_{2} & 2 f_{1} & 1 & & & & \\
g_{3} & 3 f_{2} & 3 g_{1} & 1 & & & \\
g_{4} & 4 f_{3} & 6 g_{2} & 4 f_{1} & 1 & & \\
g_{5} & 5 f_{4} & 10 g_{3} & 10 f_{2} & 5 g_{1} & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

and is equal to the Hadamard product of Pascal's triangle with an element of the generalised Appell group \mathcal{A}_{2} :

$$
\left(\begin{array}{cccccc}
1 & & & & \\
1 & 1 & & & & \\
1 & 2 & 1 & & & \\
1 & 3 & 3 & 1 & & \\
1 & 4 & 6 & 4 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \times\left(\begin{array}{cccccc}
1 & & & & & \\
g_{1} & 1 & & & & \\
g_{2} & f_{1} & 1 & & & \\
g_{3} & f_{2} & g_{1} & 1 & & \\
g_{4} & f_{3} & g_{2} & f_{1} & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{cccccc}
1 & & & & & \\
g_{1} & 1 & & & & \\
g_{2} & 2 f_{1} & 1 & & & \\
g_{3} & 3 f_{2} & 3 g_{1} & 1 & & \\
g_{4} & 4 f_{3} & 6 g_{2} & 4 f_{1} & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Theorem 2 (i) The set of lower unitriangular arrays

$$
\widetilde{\mathcal{A}}_{2}=\left\{[[G, F]] \left\lvert\, G(x)=1+\sum_{k=1}^{\infty} g_{k} \frac{x^{k}}{k!}\right., F(x)=1+\sum_{k=1}^{\infty} f_{k} \frac{x^{k}}{k!}\right\}
$$

is a group under the operation of matrix multiplication with identity element [$[1,1]]$. The multiplication operation is given by

$$
[[g, f]] *[[G, F]]=\left[\left[g G_{\text {even }}+f G_{\text {odd }}, f F_{\text {even }}+g F_{\text {odd }}\right]\right]
$$

Equivalently,

$$
\begin{gathered}
{[[g, f]] *[[G, F]]=\left[\left[h_{1}, h_{2}\right]\right]} \\
\binom{h_{1}}{h_{2}}=\left(\begin{array}{cc}
G_{\text {even }} & G_{\text {odd }} \\
F_{\text {odd }} & F_{\text {even }}
\end{array}\right)\binom{g}{f}
\end{gathered}
$$

(ii) the inverse of the array $[[G, F]]$ is

$$
[[G, F]]^{-1}=\left[\left[\frac{F_{\text {even }}-G_{\text {odd }}}{\triangle}, \frac{G_{\text {even }}-F_{\text {odd }}}{\triangle}\right]\right]
$$

where $\triangle(x)=(G(x) F(-x)+F(x) G(-x)) / 2$.

Sketch proof. Let $g(x), f(x)$ be a pair of EGFs. Just as in Theorem 1, but with a little more work, one can show that the action of the array $[[g, f]]$ on the column vector $A=\left(a_{0}, a_{1}, \ldots\right)^{\mathrm{T}}$, and by extension its action on the corresponding EGF $A(x)=a_{0}+a_{1} x+a_{2} \frac{x^{2}}{2!}+\cdots$, is given by

$$
\begin{equation*}
[[g, f]] * A(x)=g(x) A_{\text {even }}(x)+f(x) A_{\text {odd }}(x) \tag{9}
\end{equation*}
$$

By definition, the $(2 k)^{t h}$ column of the array $[[G, F]]$ has the EGF $\frac{x^{2 k}}{(2 k)!} G(x)$. Using (9), we see that the EGF of the $(2 k)^{t h}$ column in the product array $[[g, f]][[G, F]]$ is

$$
\begin{align*}
{[[g, f]] * \frac{x^{2 k}}{(2 k)!} G(x) } & =g(x)\left(\frac{x^{2 k}}{(2 k)!} G(x)\right)_{\text {even }}+f(x)\left(\frac{x^{2 k}}{(2 k)!} G(x)\right)_{\text {odd }} \\
& =g(x) \frac{x^{2 k}}{(2 k)!} G_{\text {even }}(x)+f(x) \frac{x^{2 k}}{(2 k)!} G_{o d d}(x) \\
& =\frac{x^{2 k}}{(2 k)!}\left(g(x) G_{\text {even }}(x)+f(x) G_{\text {odd }}(x)\right) \tag{10}
\end{align*}
$$

Similarly, the EGF of the $(2 k+1)^{t h}$ column in the product $[[g, f]][[G, F]]$ is

$$
\begin{align*}
{[[g, f]] * \frac{x^{2 k+1}}{(2 k+1)!} F(x) } & =g(x)\left(\frac{x^{2 k+1}}{(2 k+1)!} F(x)\right)_{\text {even }}+f(x)\left(\frac{x^{2 k+1}}{(2 k+1)!} F(x)\right)_{\text {odd }} \\
& =g(x) \frac{x^{2 k+1}}{(2 k+1)!} F_{\text {odd }}(x)+f(x) \frac{x^{2 k+1}}{(2 k+1)!} F_{\text {even }}(x) \\
& =\frac{x^{2 k+1}}{(2 k+1)!}\left(g(x) F_{\text {odd }}(x)+f(x) F_{\text {even }}(x)\right) \tag{11}
\end{align*}
$$

It follows from (10) and (11) that the matrix product

$$
[[g, f]][[G, F]]=\left[\left[g G_{\text {even }}+f G_{o d d}, f F_{\text {even }}+g F_{\text {odd }}\right]\right]
$$

It is now an easy calculation to verify the claimed formula for the inverse array $[[G, F]]^{-1}$.
2.3 The generalised exponential Appell group $\widetilde{\mathcal{A}}_{n}$. Let $G_{i}, i=0 . . n-1$, be n EGFs, all with constant term 1 . We use the double square brackets notation $\left[\left[G_{0}, G_{1}, \cdots, G_{n-1}\right]\right]$ to denote the lower unitriangular array with column EGFs generating functions

$$
\left(G_{0}, x G_{1}, \frac{x^{2}}{2!} G_{2}, \cdots, \frac{x^{n-1}}{(n-1)!} G_{n-1}, \frac{x^{n}}{n!} G_{0}, \frac{x^{n+1}}{(n+1)!} G_{1}, \cdots, \frac{x^{2 n-1}}{(2 n-1)!} G_{n-1}, \cdots\right)
$$

and denote the set of arrays of this type by $\widetilde{\mathcal{A}}_{n}$. A typical element of $\widetilde{\mathcal{A}}_{n}$ is the Hadamard product of Pascal's triangle with an element of the generalised Appell group \mathcal{A}_{n}. It is straightforward to extend the proof sketched in Theorem 2 to show that $\widetilde{\mathcal{A}}_{n}$ for $n>1$ is a group under matrix multiplication. We call the group $\widetilde{\mathcal{A}}_{n}$ a generalised exponential Appel group. The exponential Appell group $\widetilde{\mathcal{A}}_{1}$ is contained in the group $\widetilde{\mathcal{A}}_{n}$ for all n. More generally, if n divides m then $\widetilde{\mathcal{A}}_{n}$ is a subgroup of $\widetilde{\mathcal{A}}_{m}$.

References

[1] D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012).

