login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055088
Triangle of generalized Legendre symbols L(a/b) read by rows, with 1's for quadratic residues and 0's for quadratic non-residues.
5
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
L(a/b) is 1 if an integer c exists such that c^2 is congruent to a (mod b) and 0 otherwise.
For every prime of the form 4k+1 (A002144) the row is symmetric and for every prime of the form 4k+3 (A002145) the row is "complementarily symmetric".
EXAMPLE
The tenth row gives the quadratic residues and non-residues of 11 (see A011582) and the twelfth row gives the same information for 13 (A011583), with -1's replaced by zeros.
.
Triangle starts:
[ 1] [1]
[ 2] [1, 0]
[ 3] [1, 0, 0]
[ 4] [1, 0, 0, 1]
[ 5] [1, 0, 1, 1, 0]
[ 6] [1, 1, 0, 1, 0, 0]
[ 7] [1, 0, 0, 1, 0, 0, 0]
[ 8] [1, 0, 0, 1, 0, 0, 1, 0]
[ 9] [1, 0, 0, 1, 1, 1, 0, 0, 1]
[10] [1, 0, 1, 1, 1, 0, 0, 0, 1, 0]
[11] [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0]
[12] [1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
MAPLE
# See A054431 for one_or_zero and trinv.
with(numtheory, quadres); quadres_0_1_array := (n) -> one_or_zero(quadres((n-((trinv(n-1)*(trinv(n-1)-1))/2)), (trinv(n-1)+1)));
MATHEMATICA
row[n_] := With[{rr = Table[Mod[k^2, n + 1], {k, 1, n}] // Union}, Boole[ MemberQ[rr, #]]& /@ Range[n]];
Array[row, 14] // Flatten (* Jean-François Alcover, Mar 05 2016 *)
PROG
(Sage)
def A055088_row(n) :
Q = quadratic_residues(n+1)
return [int(i in Q) for i in (1..n)]
for n in (1..14) : print(A055088_row(n)) # Peter Luschny, Aug 08 2012
CROSSREFS
Each row interpreted as a binary number: A055094.
Sequence in context: A033788 A329680 A257234 * A266666 A068427 A190191
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Apr 18 2000
STATUS
approved