The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055086 n appears 1+[n/2] times. 21
 0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 0, 0 <= k <= floor(n/2)) by rows from left to right: n -> T(t1(n), t2(n)). a(n) gives the number of distinct positive values taken by [n/k]. E.g., a(5)=3: [5/{1,2,3,4,5}]={5,2,1,1,1}. - Marc LeBrun, May 17 2001 This sequence gives the elements in increasing order of the set {i+2j} where i>=0, j>=0. - Benoit Cloitre, Sep 22 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Randell Heyman, Cardinality of a floor function set, arXiv:1905.00533 [math.NT], 2019. FORMULA a(n) = [sqrt(4*n + 1)] - 1 = A000267(n) - 1. a(n) = Sum_{k=1..n} A063524(A075993(n, k)), for n>0. - Reinhard Zumkeller, Apr 06 2006 a(n) = ceiling(2*sqrt(n+1)) - 2. - Mircea Merca, Feb 05 2012 a(0) = 0, then for n>=1 a(n) = 1 + a(n-1-floor(a(n-1)/2)). - Benoit Cloitre, May 08 2017 a(n) = floor(b) + floor(n/(floor(b)+1)) where b = (sqrt(4*n+1)-1)/2. - Randell G Heyman, May 08 2019 MATHEMATICA Flatten[Table[Table[n, {Floor[n/2]+1}], {n, 0, 20}]] (* Harvey P. Dale, Mar 07 2014 *) PROG (PARI) {a(n) = floor(sqrt(4*n + 1)) - 1} (PARI) t1(n)=floor(sqrt(1+4*n)-1) /* A055086 */ (PARI) t2(n)=(1+4*n-sqr(floor(sqrt(1+4*n))))\4 /* A055087 */ (PARI) a(n)=if(n<1, 0, a(n-1-a(n-1)\2)+1) \\ Benoit Cloitre, May 09 2017 CROSSREFS Cf. A000267, A055087. Cf. A067514. Sequence in context: A232753 A067085 A321578 * A001462 A082462 A276581 Adjacent sequences:  A055083 A055084 A055085 * A055087 A055088 A055089 KEYWORD nonn,easy AUTHOR Michael Somos, Jun 13 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 00:25 EST 2020. Contains 331976 sequences. (Running on oeis4.)