login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055094 Binary encoding of quadratic residue set of n. L(1/n) is the most significant bit, L(n-1/n) is the least significant bit, i.e., the rows of A055088 interpreted as binary numbers. 10
0, 1, 2, 4, 9, 22, 52, 72, 146, 313, 738, 1156, 2829, 6772, 9520, 18496, 53643, 75154, 162438, 312328, 600116, 1513186, 4023888, 4737152, 9741609, 23182093, 38478994, 76286020, 166236537, 311977264, 921787428, 1212203072, 2962424994 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

L(a/n) stands for generalized Legendre symbol, with value = 1 only if a is a quadratic residue of n.

LINKS

Table of n, a(n) for n=1..33.

FORMULA

a(n) = qrs2bincode(n)

MAPLE

A055094 := proc(n)

    local i, z;

    z := 0;

    for i from 1 to n-1 do

        z := z*2;

        if (1 = numtheory[quadres](i, n)) then

            z := z + 1;

        fi;

    od;

    return z;

end proc:

MATHEMATICA

a[n_] := With[{rr = Table[Mod[k^2, n], {k, 1, n - 1}] // Union}, Boole[ MemberQ[rr, #]]& /@ Range[n - 1]] // FromDigits[#, 2]&; Array[a, 40] (* Jean-Fran├žois Alcover, Mar 05 2016*)

PROG

(PARI) {a(n)=sum(k=1, n-1, 2^(k-1)*(0<sum(i=1, n-1, i^2%n==n-k)))} /* Michael Somos, Oct 14 2006 */

(Sage)

def A055094(n) :

    Q = quadratic_residues(n)

    z = 0

    for i in (1..n-1)  :

        z = z*2

        if i in Q : z += 1

    return z

[A055094(n) for n in (1..33)] # Peter Luschny, Aug 08 2012

CROSSREFS

Cf. A055088, A054432, A055095.

Sequence in context: A156801 A057580 A129875 * A055729 A317735 A238826

Adjacent sequences:  A055091 A055092 A055093 * A055095 A055096 A055097

KEYWORD

nonn

AUTHOR

Antti Karttunen, Apr 04 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 21:46 EST 2020. Contains 331975 sequences. (Running on oeis4.)