login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055095
a(n) = 2*A000120(A003188(A055094(n))) - (n-1) = 2*A005811(A055094(n)) - (n-1).
3
0, 1, 2, 1, 2, 3, 2, 1, 4, 1, 2, 1, 2, 3, 2, -3, 2, 7, 2, -3, 4, 3, 2, -3, 14, 1, 10, -3, 2, 3, 2, -11, 4, 1, -2, -7, 2, 3, 2, -11, 2, 7, 2, -7, -4, 3, 2, -19, 8, 25, 2, -11, 2, 19, -6, -15, 4, 1, 2, -19, 2, 3, -6, -23, -10, 7, 2, -15, 4, -5, 2, -27, 2, 1, 6, -15, -4, 3, 2, -39, 28, 1, 2, -27, -14, 3, 2, -27, 2, -9, -10, -19, 4, 3, -14, -47, 2, 15, -14, -19, 2, 3, 2, -35, -24
OFFSET
1,3
COMMENTS
For all odd primes p, a(p) = +2 because Sum_{a=1..(p-2)} L((a(a+1))/p) = Sum_{a=1..(p-2)} L((1+(a^-1))/p) = -1; i.e. in Gray code expansion of A055094[p], the number of 1-bits is number of 0-bits + 2. However, a(n) = +2 also for some nonprime odd n = A055131.
REFERENCES
See problem 9.2.2 in Elementary Number Theory by David M. Burton, ISBN 0-205-06978-9
LINKS
FORMULA
a(n) = (2*wt(GrayCode(qrs2bincode(n))))-(n-1).
MAPLE
A055095 := proc(n)
2*A005811(A055094(n))-n+1 ;
end proc:
seq(A055095(n), n=1..20) ; # R. J. Mathar, Mar 10 2015
MATHEMATICA
A005811[n_] := Length[Length /@ Split[IntegerDigits[n, 2]]];
A055094[n_] := With[{rr = Table[Mod[k^2, n], {k, 1, n-1}] // Union}, Boole[ MemberQ[rr, #]]& /@ Range[n-1]] // FromDigits[#, 2]&;
a[1] = 0; a[n_] := 2*A005811[A055094[n]] - (n-1);
Array[a, 105] (* Jean-François Alcover, Mar 05 2016 *)
PROG
(Python)
from sympy.ntheory.residue_ntheory import quadratic_residues as q
def a055094(n):
Q=q(n)
z=0
for i in range(1, n):
z*=2
if i in Q: z+=1
return z
def a005811(n): return bin(n^(n>>1))[2:].count("1")
def a(n): return 0 if n == 1 else 2*a005811(a055094(n)) - (n - 1) # Indranil Ghosh, May 13 2017
CROSSREFS
Sequence in context: A059982 A187801 A134388 * A366770 A355249 A337618
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 04 2000
STATUS
approved