login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*A000120(A003188(A055094(n))) - (n-1) = 2*A005811(A055094(n)) - (n-1).
3

%I #28 May 14 2021 15:52:09

%S 0,1,2,1,2,3,2,1,4,1,2,1,2,3,2,-3,2,7,2,-3,4,3,2,-3,14,1,10,-3,2,3,2,

%T -11,4,1,-2,-7,2,3,2,-11,2,7,2,-7,-4,3,2,-19,8,25,2,-11,2,19,-6,-15,4,

%U 1,2,-19,2,3,-6,-23,-10,7,2,-15,4,-5,2,-27,2,1,6,-15,-4,3,2,-39,28,1,2,-27,-14,3,2,-27,2,-9,-10,-19,4,3,-14,-47,2,15,-14,-19,2,3,2,-35,-24

%N a(n) = 2*A000120(A003188(A055094(n))) - (n-1) = 2*A005811(A055094(n)) - (n-1).

%C For all odd primes p, a(p) = +2 because Sum_{a=1..(p-2)} L((a(a+1))/p) = Sum_{a=1..(p-2)} L((1+(a^-1))/p) = -1; i.e. in Gray code expansion of A055094[p], the number of 1-bits is number of 0-bits + 2. However, a(n) = +2 also for some nonprime odd n = A055131.

%D See problem 9.2.2 in Elementary Number Theory by David M. Burton, ISBN 0-205-06978-9

%H Indranil Ghosh, <a href="/A055095/b055095.txt">Table of n, a(n) for n = 1..4096</a>

%F a(n) = (2*wt(GrayCode(qrs2bincode(n))))-(n-1).

%p A055095 := proc(n)

%p 2*A005811(A055094(n))-n+1 ;

%p end proc:

%p seq(A055095(n),n=1..20) ; # _R. J. Mathar_, Mar 10 2015

%t A005811[n_] := Length[Length /@ Split[IntegerDigits[n, 2]]];

%t A055094[n_] := With[{rr = Table[Mod[k^2, n], {k, 1, n-1}] // Union}, Boole[ MemberQ[rr, #]]& /@ Range[n-1]] // FromDigits[#, 2]&;

%t a[1] = 0; a[n_] := 2*A005811[A055094[n]] - (n-1);

%t Array[a, 105] (* _Jean-François Alcover_, Mar 05 2016 *)

%o (Python)

%o from sympy.ntheory.residue_ntheory import quadratic_residues as q

%o def a055094(n):

%o Q=q(n)

%o z=0

%o for i in range(1, n):

%o z*=2

%o if i in Q: z+=1

%o return z

%o def a005811(n): return bin(n^(n>>1))[2:].count("1")

%o def a(n): return 0 if n == 1 else 2*a005811(a055094(n)) - (n - 1) # _Indranil Ghosh_, May 13 2017

%K sign

%O 1,3

%A _Antti Karttunen_, Apr 04 2000