login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A011583
Legendre symbol (n,13).
14
0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, 1, -1
OFFSET
0,1
COMMENTS
Since 13 is an odd prime, this is the same as the Jacobi symbol (n,13). - Robert Israel, Jun 29 2017
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 68.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).
FORMULA
G.f.: (x+x^3+2*x^4+x^5-x^7-2*x^8-x^9-x^11) / (1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12). - Robert Israel, Jun 29 2017
MAPLE
seq(numtheory:-legendre(n, 13), n=0..80); # Robert Israel, Jun 29 2017
MATHEMATICA
Table[JacobiSymbol[n, 13], {n, 0, 80}] (* Jean-François Alcover, May 17 2017 *)
PROG
(PARI) A011583(n) = kronecker(n, 13) ;
for(n=0, 20, print1(A011583(n)", ") ); /* R. J. Mathar, Feb 25 2012 */
CROSSREFS
Sequence in context: A011582 A145568 A168185 * A011584 A011585 A267084
KEYWORD
sign,mult,easy
AUTHOR
STATUS
approved