login
A143200
Triangle read by rows: T(n, k) = 1 if k = 0 or k = n, T(n, k) = -1 if ( binomial(n, k) mod 2 ) = 1, otherwise T(n, k) = 0.
2
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, 0, 0, 0, 1, 1, -1, 0, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, 1, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, 1, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
Similar to A047999 but with internal 1's replaced by -1's.
FORMULA
T(n, k) = -1 if ( binomial(n, k) mod 2 ) = 1, T(n, k) = 1 if k = 0 or k = n, otherwise T(n, k) = 0.
Sum_{k=0..n} T(n, k) = A142242(n) (row sums).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 0, 1;
1, -1, -1, 1;
1, 0, 0, 0, 1;
1, -1, 0, 0, -1, 1;
1, 0, -1, 0, -1, 0, 1;
1, -1, -1, -1, -1, -1, -1, 1;
1, 0, 0, 0, 0, 0, 0, 0, 1;
1, -1, 0, 0, 0, 0, 0, 0, -1, 1;
1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1;
MATHEMATICA
T[n_, k_]:= If[k==0 || k==n, 1, If[Mod[Binomial[n, k], 2]==1, -1, 0]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten
PROG
(Magma)
function A143200(n, k)
if k eq 0 or k eq n then return 1;
elif (Binomial(n, k) mod 2) eq 1 then return -1;
else return 0;
end if; end function;
[A143200(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 12 2024
(SageMath)
def A143200(n, k):
if (k==0 or k==n): return 1
elif (binomial(n, k)%2==1): return -1
else: return 0
flatten([[A143200(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 12 2024
CROSSREFS
Cf. A047999, A142242 (row sums).
Sequence in context: A077009 A078556 A144093 * A166282 A047999 A323378
KEYWORD
tabl,sign,less
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Aug 15 2009
Edited by G. C. Greubel, Jun 12 2024
STATUS
approved