login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143200
Triangle read by rows: T(n, k) = 1 if k = 0 or k = n, T(n, k) = -1 if ( binomial(n, k) mod 2 ) = 1, otherwise T(n, k) = 0.
2
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, 0, 0, 0, 1, 1, -1, 0, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, 1, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, 1, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
Similar to A047999 but with internal 1's replaced by -1's.
FORMULA
T(n, k) = -1 if ( binomial(n, k) mod 2 ) = 1, T(n, k) = 1 if k = 0 or k = n, otherwise T(n, k) = 0.
Sum_{k=0..n} T(n, k) = A142242(n) (row sums).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 0, 1;
1, -1, -1, 1;
1, 0, 0, 0, 1;
1, -1, 0, 0, -1, 1;
1, 0, -1, 0, -1, 0, 1;
1, -1, -1, -1, -1, -1, -1, 1;
1, 0, 0, 0, 0, 0, 0, 0, 1;
1, -1, 0, 0, 0, 0, 0, 0, -1, 1;
1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1;
MATHEMATICA
T[n_, k_]:= If[k==0 || k==n, 1, If[Mod[Binomial[n, k], 2]==1, -1, 0]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten
PROG
(Magma)
function A143200(n, k)
if k eq 0 or k eq n then return 1;
elif (Binomial(n, k) mod 2) eq 1 then return -1;
else return 0;
end if; end function;
[A143200(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 12 2024
(SageMath)
def A143200(n, k):
if (k==0 or k==n): return 1
elif (binomial(n, k)%2==1): return -1
else: return 0
flatten([[A143200(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 12 2024
CROSSREFS
Cf. A047999, A142242 (row sums).
Sequence in context: A077009 A078556 A144093 * A166282 A047999 A323378
KEYWORD
tabl,sign,less
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Aug 15 2009
Edited by G. C. Greubel, Jun 12 2024
STATUS
approved