OFFSET
0,1
COMMENTS
Similar to A047999 but with internal 1's replaced by -1's.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = -1 if ( binomial(n, k) mod 2 ) = 1, T(n, k) = 1 if k = 0 or k = n, otherwise T(n, k) = 0.
Sum_{k=0..n} T(n, k) = A142242(n) (row sums).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 0, 1;
1, -1, -1, 1;
1, 0, 0, 0, 1;
1, -1, 0, 0, -1, 1;
1, 0, -1, 0, -1, 0, 1;
1, -1, -1, -1, -1, -1, -1, 1;
1, 0, 0, 0, 0, 0, 0, 0, 1;
1, -1, 0, 0, 0, 0, 0, 0, -1, 1;
1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1;
MATHEMATICA
T[n_, k_]:= If[k==0 || k==n, 1, If[Mod[Binomial[n, k], 2]==1, -1, 0]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten
PROG
(Magma)
function A143200(n, k)
if k eq 0 or k eq n then return 1;
elif (Binomial(n, k) mod 2) eq 1 then return -1;
else return 0;
end if; end function;
[A143200(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 12 2024
(SageMath)
def A143200(n, k):
if (k==0 or k==n): return 1
elif (binomial(n, k)%2==1): return -1
else: return 0
flatten([[A143200(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 12 2024
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 20 2008
EXTENSIONS
Edited by N. J. A. Sloane, Aug 15 2009
Edited by G. C. Greubel, Jun 12 2024
STATUS
approved