login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143199
Triangle read by rows: T(n, k) = (n+1)*A000096(k-1) + n if k <= floor(n/2), otherwise T(n, k) = (n+1)*A000096(n-k-1) + n.
1
-1, -1, -1, -1, 2, -1, -1, 3, 3, -1, -1, 4, 14, 4, -1, -1, 5, 17, 17, 5, -1, -1, 6, 20, 41, 20, 6, -1, -1, 7, 23, 47, 47, 23, 7, -1, -1, 8, 26, 53, 89, 53, 26, 8, -1, -1, 9, 29, 59, 99, 99, 59, 29, 9, -1, -1, 10, 32, 65, 109, 164, 109, 65, 32, 10, -1
OFFSET
0,5
FORMULA
T(n, m) = (n + 1)*(if m <= floor(n/2) then (m - 1)*(m + 2) / 2 else (n - m + 2)*(n - (m + 1)) / 2 fi) + n. - Georg Fischer, Oct 28 2023
From G. C. Greubel, Jun 10 2024: (Start)
T(n, k) = n + (n+1)*(k-1)*(k+2)/2 if 0 <= k <= floor(n/2), otherwise T(n, k) = T(n, n-k).
Sum_{k=0..n} T(n, k) = (1/48)*(n+1)*(-53 - 5*n + 3*(-1)^n*(n+1) + 2*(n + 1)^3). (End)
EXAMPLE
Triangle begins as:
-1;
-1, -1;
-1, 2, -1;
-1, 3, 3, -1;
-1, 4, 14, 4, -1;
-1, 5, 17, 17, 5, -1;
-1, 6, 20, 41, 20, 6, -1;
-1, 7, 23, 47, 47, 23, 7, -1;
-1, 8, 26, 53, 89, 53, 26, 8, -1;
-1, 9, 29, 59, 99, 99, 59, 29, 9, -1;
-1, 10, 32, 65, 109, 164, 109, 65, 32, 10, -1;
MAPLE
seq(print(seq((n + 1) * (if m <= n/2 then (m - 1) * (m + 2)\
/ 2 else (n - m + 2) * (n - (m + 1)) / 2 fi) + n, m=0..n)), n=0..10); # Georg Fischer, Oct 28 2023
MATHEMATICA
T[n_, k_]:= If[k<=Floor[n/2], n +(n+1)*(k-1)*(k+2)/2, T[n, n-k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma)
function T(n, k) // A143199
if k le Floor(n/2) then return n + (n+1)*(k-1)*(k+2)/2;
else return T(n, n-k);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 10 2024
(SageMath)
def A143199(n, k): return n +(n+1)*(k-1)*(k+2)//2 if (k<1+int(n//2)) else A143199(n, n-k)
flatten([[A143199(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 10 2024
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Definition clarified and offset corrected by Georg Fischer, Oct 28 2023
STATUS
approved