login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143197
Triangle read by rows: imaginary part of polylog expansion of Eulerian numbers: p(x,n) = (1 - I*x)^(n + 1)*PolyLog(-n, I*x)/x.
1
1, 1, 1, 0, 1, 0, -1, 1, 0, -11, 0, 1, 0, -66, 0, 1, 1, 0, -302, 0, 57, 0, 1, 0, -1191, 0, 1191, 0, -1, 1, 0, -4293, 0, 15619, 0, -247, 0, 1, 0, -14608, 0, 156190, 0, -14608, 0, 1, 1, 0, -47840, 0, 1310354, 0, -455192, 0, 1013, 0, 1, 0, -152637, 0, 9738114, 0, -9738114, 0, 152637, 0, -1
OFFSET
0,10
FORMULA
T(n, k) = [x^k]( Im( p(x, n) ) ), where p(x, n) = (1 - i*x)^(n + 1)*PolyLog(-n, i*x)/x, and T(0, 0) = 1.
EXAMPLE
Coefficients of p(x, n):
i;
i, -1;
i, -4, -i;
i, -11, -11*i, 1;
i, -26, -66*i, 26, i;
i, -57, -302*i, 302, 57*i, -1;
i, -120, -1191*i, 2416, 1191*i, -120, -i;
i, -247, -4293*i, 15619, 15619*i, -4293, -247*i, 1;
i, -502, -14608*i, 88234, 156190*i, -88234, -14608*i, 502, i;
Triangle of imaginary coefficients of p(x, n) begins as:
1;
1;
1, 0;
1, 0, -1;
1, 0, -11, 0;
1, 0, -66, 0, 1;
1, 0, -302, 0, 57, 0;
1, 0, -1191, 0, 1191, 0, -1;
1, 0, -4293, 0, 15619, 0, -247, 0;
1, 0, -14608, 0, 156190, 0, -14608, 0, 1;
1, 0, -47840, 0, 1310354, 0, -455192, 0, 1013, 0;
MATHEMATICA
p[x_, n_]:= (1-I*x)^(n+1)*PolyLog[-n, I*x]/x;
T[n_, k_]:= Coefficient[Series[p[x, n], {x, 0, 60}], x, k];
Join[{1}, Table[Im[T[n, k]], {n, 12}, {k, 0, n-1}]]//Flatten
PROG
(SageMath)
def p(n, x): return (1-i*x)^(n+1)*polylog(-n, i*x)/x
def A143197(n, k): return imag( ( p(n, x) ).series(x, n+1).list()[k] )
flatten([1]+[[A143197(n, k) for k in range(n)] for n in (1..12)]) # G. C. Greubel, Jun 09 2024
CROSSREFS
Cf. A060187.
Sequence in context: A179920 A216726 A323169 * A138066 A173189 A115595
KEYWORD
tabf,sign,less
AUTHOR
Roger L. Bagula, Oct 19 2008
EXTENSIONS
The entries here are clearly all wrong (compare the example lines). What are the real parts? - N. J. A. Sloane, Oct 25 2008
The entries were those of A143196; entries replaced with those in the example by Georg Fischer, Nov 03 2018
Edited by G. C. Greubel, Jun 09 2024
STATUS
approved