login
A323169
Greatest common divisor of the set of solutions to phi(x) = n, or 0 if n is not a totient.
2
1, 1, 0, 1, 0, 1, 0, 1, 0, 11, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 23, 0, 1, 0, 0, 0, 29, 0, 31, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 23, 0, 47, 0, 1, 0, 0, 0, 53, 0, 81, 0, 29, 0, 59, 0, 1, 0, 0, 0, 1, 0, 67, 0, 0, 0, 71, 0, 1, 0, 0, 0, 0, 0, 79, 0, 1, 0, 83, 0, 1, 0, 0, 0, 1, 0, 0, 0, 47, 0, 0, 0, 1, 0, 0, 0, 1, 0, 103, 0, 53, 0
OFFSET
1,10
FORMULA
a(n) = 0 iff A014197(n) == 0.
PROG
(PARI) A323169(n) = gcd(invphi(n)); \\ With invphi from Max Alekseyev's PARI-script collection
CROSSREFS
Cf. A000010, A014197, A303745 (positions of terms larger than one), A323514 (their characteristic function).
Sequence in context: A110408 A179920 A216726 * A143197 A138066 A173189
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 18 2019
STATUS
approved