login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143203
Numbers having exactly two distinct prime factors p, q with q = p+4.
5
21, 63, 77, 147, 189, 221, 437, 441, 539, 567, 847, 1029, 1323, 1517, 1701, 2021, 2873, 3087, 3757, 3773, 3969, 4757, 5103, 5929, 6557, 7203, 8303, 9261, 9317, 9797, 10051, 11021, 11907, 12317, 15309, 16637, 21609
OFFSET
1,1
COMMENTS
Subsequence of A007774.
A033850 is a subsequence.
Subsequence of A195106. - Reinhard Zumkeller, Sep 13 2011
LINKS
Eric Weisstein's World of Mathematics, Cousin Primes.
FORMULA
A143201(a(n)) = 5.
A020639(a(n)) in A023200 and A006530(a(n)) in A046132.
A001221(a(n)) = 2.
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A023200(n)+1)^2-4) = 0.109882433872... . - Amiram Eldar, Oct 26 2024
EXAMPLE
a(1) = 21 = 3 * 7 = A023200(1) * A046132(1).
a(2) = 63 = 3^2 * 7 = A023200(1)^2 * A046132(1).
a(3) = 77 = 7 * 11 = A023200(2) * A046132(2).
a(4) = 147 = 3 * 7^2 = A023200(1) * A046132(1)^2.
a(5) = 189 = 3*3 * 7 = A023200(1)^3 * A046132(1).
a(6) = 221 = 13 * 17 = A023200(3) * A046132(3).
a(7) = 437 = 19 * 23 = A023200(4) * A046132(4).
a(8) = 441 = 3^2 * 7^2 = A023200(1)^2 * A046132(1)^2.
a(9) = 539 = 7^2 * 11 = A023200(2)^2 * A046132(2).
a(10) = 567 = 3^4 * 7 = A023200(1)^4 * A046132(1).
MATHEMATICA
dpf2Q[n_]:=Module[{fi=FactorInteger[n][[;; , 1]]}, Length[fi]==2&&fi[[2]]-fi[[1]]==4]; Select[Range[22000], dpf2Q] (* Harvey P. Dale, Mar 18 2023 *)
PROG
(Haskell)
a143203 n = a143203_list !! (n-1)
a143203_list = filter f [1, 3..] where
f x = length pfs == 2 && last pfs - head pfs == 4 where
pfs = a027748_row x
-- Reinhard Zumkeller, Sep 13 2011
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 12 2008
STATUS
approved