login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166280 Stirling2 triangle mod 2, T(n,k) = A008277(n,k) mod 2. 0
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..104.

EXAMPLE

Triangle begins:

1,

1,1,

1,1,1,

1,1,0,1,

1,1,1,0,1,

1,1,0,1,1,1,

1,1,1,0,0,1,1,

1,1,0,1,0,0,0,1,

1,1,1,0,1,0,0,0,1,

1,1,0,1,1,1,0,0,1,1,

1,1,1,0,0,1,1,0,1,1,1,

1,1,0,1,0,0,0,1,1,1,0,1,

1,1,1,0,1,0,0,0,0,1,1,0,1,

...

PROG

(PARI) p = 2; s=14; S2T = matrix(s, s, n, k, if(k==1, 1)); for(n=2, s, for(k=2, n, S2T[n, k]=k*S2T[n-1, k]+S2T[n-1, k-1]));

S2TMP = matrix(s, s, n, k, S2T[n, k]%p);

for(n=1, s, for(k=1, n, print1(S2TMP[n, k], " ")); print())

CROSSREFS

Cf. A008277, A047999 (Sierpinski's triangle, Pascal's triangle mod 2).

Sequence in context: A351824 A334460 A071023 * A340371 A340374 A070887

Adjacent sequences: A166277 A166278 A166279 * A166281 A166282 A166283

KEYWORD

easy,nonn,tabl

AUTHOR

Gerald McGarvey, Oct 10 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 15:48 EDT 2023. Contains 361528 sequences. (Running on oeis4.)