The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166280 Stirling2 triangle mod 2, T(n,k) = A008277(n,k) mod 2. 0
 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS EXAMPLE Triangle begins: 1, 1,1, 1,1,1, 1,1,0,1, 1,1,1,0,1, 1,1,0,1,1,1, 1,1,1,0,0,1,1, 1,1,0,1,0,0,0,1, 1,1,1,0,1,0,0,0,1, 1,1,0,1,1,1,0,0,1,1, 1,1,1,0,0,1,1,0,1,1,1, 1,1,0,1,0,0,0,1,1,1,0,1, 1,1,1,0,1,0,0,0,0,1,1,0,1, ... PROG (PARI) p = 2; s=14; S2T = matrix(s, s, n, k, if(k==1, 1)); for(n=2, s, for(k=2, n, S2T[n, k]=k*S2T[n-1, k]+S2T[n-1, k-1])); S2TMP = matrix(s, s, n, k, S2T[n, k]%p); for(n=1, s, for(k=1, n, print1(S2TMP[n, k], " ")); print()) CROSSREFS Cf. A008277, A047999 (Sierpinski's triangle, Pascal's triangle mod 2). Sequence in context: A351824 A334460 A071023 * A340371 A340374 A070887 Adjacent sequences: A166277 A166278 A166279 * A166281 A166282 A166283 KEYWORD easy,nonn,tabl AUTHOR Gerald McGarvey, Oct 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 15:48 EDT 2023. Contains 361528 sequences. (Running on oeis4.)