login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A166280
Stirling2 triangle mod 2, T(n,k) = A008277(n,k) mod 2.
0
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1
OFFSET
0,1
EXAMPLE
Triangle begins:
1,
1,1,
1,1,1,
1,1,0,1,
1,1,1,0,1,
1,1,0,1,1,1,
1,1,1,0,0,1,1,
1,1,0,1,0,0,0,1,
1,1,1,0,1,0,0,0,1,
1,1,0,1,1,1,0,0,1,1,
1,1,1,0,0,1,1,0,1,1,1,
1,1,0,1,0,0,0,1,1,1,0,1,
1,1,1,0,1,0,0,0,0,1,1,0,1,
...
PROG
(PARI) p = 2; s=14; S2T = matrix(s, s, n, k, if(k==1, 1)); for(n=2, s, for(k=2, n, S2T[n, k]=k*S2T[n-1, k]+S2T[n-1, k-1]));
S2TMP = matrix(s, s, n, k, S2T[n, k]%p);
for(n=1, s, for(k=1, n, print1(S2TMP[n, k], " ")); print())
CROSSREFS
Cf. A008277, A047999 (Sierpinski's triangle, Pascal's triangle mod 2).
Sequence in context: A365716 A334460 A071023 * A340371 A340374 A070887
KEYWORD
easy,nonn,tabl
AUTHOR
Gerald McGarvey, Oct 10 2009
STATUS
approved