|
|
A166280
|
|
Stirling2 triangle mod 2, T(n,k) = A008277(n,k) mod 2.
|
|
0
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..104.
|
|
EXAMPLE
|
Triangle begins:
1,
1,1,
1,1,1,
1,1,0,1,
1,1,1,0,1,
1,1,0,1,1,1,
1,1,1,0,0,1,1,
1,1,0,1,0,0,0,1,
1,1,1,0,1,0,0,0,1,
1,1,0,1,1,1,0,0,1,1,
1,1,1,0,0,1,1,0,1,1,1,
1,1,0,1,0,0,0,1,1,1,0,1,
1,1,1,0,1,0,0,0,0,1,1,0,1,
...
|
|
PROG
|
(PARI) p = 2; s=14; S2T = matrix(s, s, n, k, if(k==1, 1)); for(n=2, s, for(k=2, n, S2T[n, k]=k*S2T[n-1, k]+S2T[n-1, k-1]));
S2TMP = matrix(s, s, n, k, S2T[n, k]%p);
for(n=1, s, for(k=1, n, print1(S2TMP[n, k], " ")); print())
|
|
CROSSREFS
|
Cf. A008277, A047999 (Sierpinski's triangle, Pascal's triangle mod 2).
Sequence in context: A351824 A334460 A071023 * A340371 A340374 A070887
Adjacent sequences: A166277 A166278 A166279 * A166281 A166282 A166283
|
|
KEYWORD
|
easy,nonn,tabl
|
|
AUTHOR
|
Gerald McGarvey, Oct 10 2009
|
|
STATUS
|
approved
|
|
|
|