login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077478
Rectangular array R read by antidiagonals: R(i,j) is the number of integers k that divide both i and j (i >= 1, j >= 1).
4
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1
OFFSET
1,5
COMMENTS
Antidiagonal sums of R, alias row sums of T, are essentially A065608. Diagonal elements of R comprise A000203 (sums of divisors of n).
Antidiagonals of an array formed by A051731 * A051731 (transposed). - Gary W. Adamson, Nov 12 2007
If R(n) is the n X n Redheffer matrix (A143104) and Rt(n) is its transposed matrix, then this sequence seems to be formed by R(n)*Rt(n). - Enrique Pérez Herrero, Feb 21 2012
FORMULA
R=U*V, where U and V are the summatory matrices (A077049, A077051). The triangle T(n, k) formed by antidiagonals: T(n, k)=tau(gcd(k, n+1-k)) for 1<=k<=n, where tau(m)=A000005(m). [Corrected by Leroy Quet, Apr 08 2009]
Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} tau(gcd(n,k))/n^s/k^c = zeta(s)*zeta(c)* zeta(s + c). - Mats Granvik, May 19 2021
EXAMPLE
First few rows of the array R are:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 2, 1, 2, 1, ...
1, 1, 2, 1, 1, 2, 1, ...
1, 2, 1, 3, 1, 2, 1, ...
1, 1, 1, 1, 2, 1, 1, ...
1, 2, 2, 2, 1, 4, 1, ...
...
First few rows of the triangle T are:
1;
1, 1;
1, 2, 1;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 1, 1, 1, 1, 1;
1, 2, 1, 3, 1, 3, 1;
1, 1, 2, 1, 1, 2, 1, 1;
1, 2, 1, 2, 2, 2, 1, 2, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1;
...
R(4,2)=2 since 1|2, 1|4 and 2|2, 2|4.
MATHEMATICA
T[n_, k_]:=DivisorSigma[0, GCD[n, k]]; Flatten[Table[T[n-k+1, k], {n, 14}, {k, n}]] (* Stefano Spezia, May 23 2021 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Nov 08 2002
EXTENSIONS
Edited by N. J. A. Sloane, Jan 11 2009
STATUS
approved