login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077478 Rectangular array R read by antidiagonals: R(i,j) is the number of integers k that divide both i and j (i >= 1, j >= 1). 4
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Antidiagonal sums of R, alias row sums of T, are essentially A065608. Diagonal elements of R comprise A000203 (sums of divisors of n).
Antidiagonals of an array formed by A051731 * A051731 (transposed). - Gary W. Adamson, Nov 12 2007
If R(n) is the n X n Redheffer matrix (A143104) and Rt(n) is its transposed matrix, then this sequence seems to be formed by R(n)*Rt(n). - Enrique Pérez Herrero, Feb 21 2012
LINKS
FORMULA
R=U*V, where U and V are the summatory matrices (A077049, A077051). The triangle T(n, k) formed by antidiagonals: T(n, k)=tau(gcd(k, n+1-k)) for 1<=k<=n, where tau(m)=A000005(m). [Corrected by Leroy Quet, Apr 08 2009]
Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} tau(gcd(n,k))/n^s/k^c = zeta(s)*zeta(c)* zeta(s + c). - Mats Granvik, May 19 2021
EXAMPLE
First few rows of the array R are:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 2, 1, 2, 1, ...
1, 1, 2, 1, 1, 2, 1, ...
1, 2, 1, 3, 1, 2, 1, ...
1, 1, 1, 1, 2, 1, 1, ...
1, 2, 2, 2, 1, 4, 1, ...
...
First few rows of the triangle T are:
1;
1, 1;
1, 2, 1;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 1, 1, 1, 1, 1;
1, 2, 1, 3, 1, 3, 1;
1, 1, 2, 1, 1, 2, 1, 1;
1, 2, 1, 2, 2, 2, 1, 2, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1;
...
R(4,2)=2 since 1|2, 1|4 and 2|2, 2|4.
MATHEMATICA
T[n_, k_]:=DivisorSigma[0, GCD[n, k]]; Flatten[Table[T[n-k+1, k], {n, 14}, {k, n}]] (* Stefano Spezia, May 23 2021 *)
CROSSREFS
Sequence in context: A025910 A002637 A166279 * A127836 A307433 A245618
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Nov 08 2002
EXTENSIONS
Edited by N. J. A. Sloane, Jan 11 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 03:04 EST 2024. Contains 370499 sequences. (Running on oeis4.)