login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectangular array R read by antidiagonals: R(i,j) is the number of integers k that divide both i and j (i >= 1, j >= 1).
4

%I #39 May 24 2021 00:45:46

%S 1,1,1,1,2,1,1,1,1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,1,3,1,2,1,1,1,2,1,1,2,

%T 1,1,1,2,1,2,2,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,1,4,1,3,2,2,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,2,2,1,2,1,2,1,1,1,2,1,2,2,1,1,2,2,1,2,1,1

%N Rectangular array R read by antidiagonals: R(i,j) is the number of integers k that divide both i and j (i >= 1, j >= 1).

%C Antidiagonal sums of R, alias row sums of T, are essentially A065608. Diagonal elements of R comprise A000203 (sums of divisors of n).

%C Antidiagonals of an array formed by A051731 * A051731 (transposed). - _Gary W. Adamson_, Nov 12 2007

%C If R(n) is the n X n Redheffer matrix (A143104) and Rt(n) is its transposed matrix, then this sequence seems to be formed by R(n)*Rt(n). - _Enrique Pérez Herrero_, Feb 21 2012

%H Stefano Spezia, <a href="/A077478/b077478.txt">First 150 antidiagonals of the array, flattened</a>

%F R=U*V, where U and V are the summatory matrices (A077049, A077051). The triangle T(n, k) formed by antidiagonals: T(n, k)=tau(gcd(k, n+1-k)) for 1<=k<=n, where tau(m)=A000005(m). [Corrected by _Leroy Quet_, Apr 08 2009]

%F Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} tau(gcd(n,k))/n^s/k^c = zeta(s)*zeta(c)* zeta(s + c). - _Mats Granvik_, May 19 2021

%e First few rows of the array R are:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 1, 2, 1, 2, 1, ...

%e 1, 1, 2, 1, 1, 2, 1, ...

%e 1, 2, 1, 3, 1, 2, 1, ...

%e 1, 1, 1, 1, 2, 1, 1, ...

%e 1, 2, 2, 2, 1, 4, 1, ...

%e ...

%e First few rows of the triangle T are:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 1, 1, 1;

%e 1, 2, 2, 2, 1;

%e 1, 1, 1, 1, 1, 1;

%e 1, 2, 1, 3, 1, 3, 1;

%e 1, 1, 2, 1, 1, 2, 1, 1;

%e 1, 2, 1, 2, 2, 2, 1, 2, 1;

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;

%e 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1;

%e ...

%e R(4,2)=2 since 1|2, 1|4 and 2|2, 2|4.

%t T[n_,k_]:=DivisorSigma[0,GCD[n,k]]; Flatten[Table[T[n-k+1,k],{n,14},{k,n}]] (* _Stefano Spezia_, May 23 2021 *)

%Y Cf. A051194, A077049, A077051.

%Y Cf. A051731, A065608.

%K nonn,tabl

%O 1,5

%A _Clark Kimberling_, Nov 08 2002

%E Edited by _N. J. A. Sloane_, Jan 11 2009