login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143104
Infinite Redheffer matrix read by upwards antidiagonals.
19
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
OFFSET
1,1
COMMENTS
Note that Redheffer's matrix (1977) is actually given by A077049: the first row starts with a single 1. We follow the nomenclature of Wilf, Dana, Vaughan and Weisstein, which uses the transpose and sets the first column to all-1. - R. J. Mathar, Jul 22 2017
The determinant of the n X n Redheffer matrix is given by Mertens's function A002321(n) [Barrett].
For n > 1, replacing a(n,n) with 0 in the Redheffer matrix and taking the determinant gives Moebius(n) = A008683(n). The number of permutations with nonzero contribution to this determinant is given by A002033. For first few n, these permutations are shown in the sequences A144193 to A144201. - Mats Granvik, Sep 14 2008
The determinant that is the Moebius function was discovered by reading the blog post "The Mobius function is strongly orthogonal to nilsequences" by Terence Tao. - Mats Granvik, Jan 24 2009
REFERENCES
R. C. Vaughan, On the eigenvalues of Redheffer's matrix I, in: Number Theory with an Emphasis on the Markoff Spectrum (Provo, Utah, 1991), 283-296, Lecture Notes in Pure and Appl. Math., 147, Dekker, New-York, 1993.
LINKS
W. B. Barret, R. W. Forcade and A. D. Pollington, On the spectral radius of a (0,1) matrix related to Mertens' Function, Lin. Alg. Applic. 107 (1988) 151-159.
Olivier Bordellès and Benoit Cloitre, A matrix inequality for Möbius functions, J. Inequal. Pure and Appl. Math., Volume 10 (2009), Issue 3, Article 62, 9 pp.
R. M. Redheffer, Eine explizit lösbare Optimierungsaufgabe, Internat. Schiftenreihe Numer. Math., 36 (1977), 213-216.
R. C. Vaughan, On the eigenvalues of Redheffer's matrix, II, J. Austral. Math. Soc. (Series A) 60 (1996), 260-273.
Eric Weisstein's World of Mathematics, Redheffer Matrix.
Herbert S. Wilf, The Redheffer matrix of a partially ordered set, arXiv:math/0408263 [math.CO], 2004.
Herbert S. Wilf, The Redheffer matrix of a partially ordered set, The Electronic Journal of Combinatorics 11(2) (2004), #R10.
FORMULA
a(i,j) = 1 if j=1 or i|j; 0 otherwise.
a(A000217(n)) = a(A000217(n)+1) = 1. - Enrique Pérez Herrero, Apr 16 2010
EXAMPLE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
MAPLE
A143104 := proc(i, j)
if modp(j, i) =0 or j = 1 then
1;
else
0;
end if;
end proc:
for d from 2 to 10 do
for m from d-1 to 1 by -1 do
n := d-m ;
printf("%d ", A143104(n, m)) ;
end do:
end do: # R. J. Mathar, Jul 23 2017
MATHEMATICA
Redheffer[i_, j_] := Boole[Divisible[i, j] || (i == 1)];
T[n_] := n*(n + 1)/2;
S[n_] := Floor[1/2 + Sqrt[2 n]];
j[n_] := 1 + T[S[n]] - n;
i[n_] := 1 + S[n] - j[n];
A143104[n_] := Redheffer[i[n], j[n]]; (* Enrique Pérez Herrero, Apr 13 2010 *)
a[i_, j_] := If[j == 1 || Divisible[j, i], 1, 0];
Table[a[i-j+1, j], {i, 1, 14}, {j, 1, i}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
PROG
(Excel) =if(mod(column(); row())=0; 1; if(column()=1; 1; 0)). Produces the Redheffer matrix.
(PARI) { a(i, j) = (j==1) || (j%i==0); }
CROSSREFS
Cf. A002033, A144193 .. A144201, A143142. - Mats Granvik, Sep 14 2008
Sequence in context: A204183 A204177 A185917 * A127236 A117947 A175860
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited and extended by Max Alekseyev, Oct 28 2008
STATUS
approved