login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A143107
Let H(2,d) be the space of polynomials p(x,y) of two variables with nonnegative coefficients such that p(x,y) = 1 whenever x + y = 1; a(n) is the number of different polynomials in H(2,d) with exactly n distinct monomials and of maximum degree, i.e., of degree 2n-3.
3
0, 1, 1, 2, 4, 2, 4, 8, 4, 2, 24, 2
OFFSET
1,4
COMMENTS
It is unknown if this sequence is bounded. For all n >= 4, a(n) is at least two. It is unknown if it is 2 for infinitely many n. It is unknown if it is always even for all n >= 2. Note that 2n-3 appears in A143106 if and only if a(n) is 1 or 2.
LINKS
J. P. D'Angelo and J. Lebl, Complexity results for CR mappings between spheres, Internat. J. Math. 20 (2009), no. 2, 149-166.
J. P. D'Angelo and J. Lebl, Complexity results for CR mappings between spheres, arXiv:0708.3232 [math.CV], 2008.
J. P. D'Angelo, Simon Kos and Emily Riehl, A sharp bound for the degree of proper monomial mappings between balls, J. Geom. Anal., 13(4):581-593, 2003.
J. Lebl and D. Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, arXiv:0808.0284 [math.CV], 2008-2010.
J. Lebl and D. Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, Linear Algebra Appl., 433 (2010), no. 4, 824-837
EXAMPLE
a(3) = 1 as x^3 + 3xy + y^3 is the unique polynomial in H(2,d) with 3 terms and of maximum degree (in this case 3).
MATHEMATICA
See the paper by Lebl and Lichtblau.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jiri Lebl, Jul 25 2008
EXTENSIONS
One more term (24), added addendum to and corrected title of paper - Jiri Lebl, Feb 08 2013
Added another term (2) that was computed in the newer version of the addendum. Edited by Jiri Lebl, May 02 2014
STATUS
approved