login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143108
Let H(2,d) be the space of polynomials p(x,y) of two variables with nonnegative coefficients such that p(x,y)=1 whenever x + y = 1. a(n) is the number of different polynomials in H(2,d) with exactly n distinct monomials and of maximum degree minus 1, i.e., of degree 2n-4.
2
0, 0, 3, 4, 10, 24, 32, 56
OFFSET
1,3
LINKS
J. P. D'Angelo, Simon Kos and Emily Riehl, A sharp bound for the degree of proper monomial mappings between balls, J. Geom. Anal., 13(4):581-593, 2003.
J. P. D'Angelo and J. Lebl, Complexity results for CR mappings between spheres, arXiv:0708.3232 [math.CV], 2008.
J. P. D'Angelo and J. Lebl, Complexity results for CR mappings between spheres, Internat. J. Math. 20 (2009), no. 2, 149-166.
J. Lebl and D. Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, arXiv:0808.0284 [math.CV], 2008-2010.
J. Lebl and D. Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, Linear Algebra Appl., 433 (2010), no. 4, 824-837
FORMULA
Possibly can be computed from A143107 except for the third term, but this is not proved. Let b_n be elements of A143107, then a_n = 2 ( b_2 b_{n-1} + b_3 b_{n-2} + ... + b_{n-1} b_2 ).
MATHEMATICA
See the paper by Lebl-Lichtblau.
CROSSREFS
Sequence in context: A200981 A266729 A103038 * A169790 A014009 A274220
KEYWORD
hard,nonn,more
AUTHOR
Jiri Lebl (jlebl(AT)math.uiuc.edu), Jul 25 2008
STATUS
approved