login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127236 A Thue-Morse binomial triangle. 6
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Row sums are A127237. Diagonal sums are A127238. Central coefficients T(2n,n) are A127239.

LINKS

Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)

FORMULA

Number triangle T(n,k) = A010060(binomial(n,k)).

EXAMPLE

Triangle begins

  1;

  1, 1;

  1, 1, 1;

  1, 0, 0, 1;

  1, 1, 0, 1, 1;

  1, 0, 0, 0, 0, 1;

  1, 0, 0, 0, 0, 0, 1;

  1, 1, 1, 1, 1, 1, 1, 1;

  1, 1, 1, 1, 1, 1, 1, 1, 1;

  1, 0, 0, 1, 0, 0, 1, 0, 0, 1;

  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;

MAPLE

tm:= proc(n) option remember;

  if n::even then procname(n/2^padic:-ordp(n, 2))

  else 1 - procname((n-1)/2)

  fi

end proc:

tm(0):= 0:

seq(seq(tm(binomial(n, k)), k=0..n), n=0..15); # Robert Israel, May 07 2019

MATHEMATICA

T[n_, k_] := ThueMorse[Binomial[n, k]];

Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jun 04 2020 *)

CROSSREFS

Cf. A010060, A127237, A127238, A127239.

Sequence in context: A204177 A185917 A143104 * A117947 A175860 A092152

Adjacent sequences:  A127233 A127234 A127235 * A127237 A127238 A127239

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Jan 10 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 27 15:03 EDT 2021. Contains 348287 sequences. (Running on oeis4.)