login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370598
Characteristic function of exponentially squarefree numbers (A209061).
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1
OFFSET
1
LINKS
Jean-Marie De Koninck and William Verreault, On the tower factorization of integers, arXiv:2308.09149 [math.NT], 2023. See page 2.
FORMULA
Multiplicative with a(p^e) = mu(e)^2, where mu is the Möbius function (A008683).
a(n) = 1 if and only if n is in A209061.
a(n) = 0 if and only if n is in A130897.
a(n) = abs(A166234(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A262276.
MATHEMATICA
f[p_, e_] := MoebiusMu[e]^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> moebius(x)^2, factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Feb 23 2024
STATUS
approved