login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103941
Number of unrooted loopless n-edge maps in the plane (planar with a distinguished outside face).
3
1, 1, 2, 6, 22, 103, 614, 3872, 26414, 186988, 1367976, 10254326, 78461338, 610598818, 4821248244, 38546510368, 311560875422, 2542507084588, 20925300483992, 173530381632724, 1448900079476152, 12172334379246523, 102833593763830038, 873187910184763024, 7449120536014301138
OFFSET
0,3
REFERENCES
V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
LINKS
V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
FORMULA
For n > 0, a(n) = (1/(2n))*[binomial(4n, n)/(3n+1) + Sum_{0<k<n, k|n} phi(n/k)*binomial(4k, k)+q(n)] where phi is the Euler function A000010, q(n)=0 if n is even and q(n)=binomial(2n, (n-1)/2) if n is odd.
MATHEMATICA
a[n_] := (1/(2n)) (Binomial[4n, n]/(3n+1) + Sum[Boole[0 < k < n] EulerPhi[ n/k] Binomial[4k, k], {k, Divisors[n]}] + q[n]);
q[n_] := If[EvenQ[n], 0, Binomial[2n, (n-1)/2]];
Array[a, 20] (* Jean-François Alcover, Sep 01 2019 *)
PROG
(PARI) a(n) = {if(n==0, 1, (sumdiv(n, d, if(d<n, 1, 1/(3*n+1)) * eulerphi(n/d) * binomial(4*d, d)) + if(n%2, binomial(2*n, (n-1)/2)))/(2*n))} \\ Andrew Howroyd, Mar 28 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Mar 17 2005
EXTENSIONS
a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 28 2021
STATUS
approved