login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A355362 G.f. A(x) satisfies: 2*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. 6
1, 2, 14, 106, 852, 7286, 65216, 603714, 5731930, 55506348, 546091942, 5443033448, 54845812094, 557774491672, 5717718435034, 59017814463718, 612873311614338, 6398538141213916, 67121038262747380, 707114126290890810, 7478082640450505012, 79360375914717108922 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A355360(n,k) * 2^k for n >= 0.
G.f. A(x) satisfies:
(1) 2*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) -2*x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) 2*x*A(x)*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 14*x^2 + 106*x^3 + 852*x^4 + 7286*x^5 + 65216*x^6 + 603714*x^7 + 5731930*x^8 + 55506348*x^9 + 546091942*x^10 + ...
where
2*x*A(x) = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...
PROG
(PARI) {a(n) = my(A=[1, 2], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
A[#A] = polcoeff( 2*x*Ser(A) - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A121122 A026293 A051708 * A074618 A108436 A088754
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 19 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 22:43 EDT 2024. Contains 375759 sequences. (Running on oeis4.)