The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355364 G.f. A(x) satisfies: x^2*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. 6
 1, 0, 1, 3, 11, 34, 110, 350, 1147, 3800, 12836, 43929, 152285, 533205, 1883187, 6698612, 23974179, 86258459, 311811314, 1131863444, 4124127216, 15078422405, 55301519095, 203405409935, 750122683729, 2773048061073, 10274442343829, 38147288401915 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Equals the antidiagonal sums of A355360; a(n) = Sum_{k=0..n} A355360(n-k,k). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..400 FORMULA G.f. A(x) satisfies: (1) x^2*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. (2) -x^2*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n. (3) x^2*A(x)*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity. EXAMPLE G.f.: A(x) = 1 + x^2 + 3*x^3 + 11*x^4 + 34*x^5 + 110*x^6 + 350*x^7 + 1147*x^8 + 3800*x^9 + 12836*x^10 + 43929*x^11 + 152285*x^12 + ... where x^2*A(x) = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ... PROG (PARI) {a(n) = my(A=[1, 0], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9)); A[#A] = polcoeff( x^2*Ser(A) - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A355360, A355361, A355362, A355363, A355365. Sequence in context: A357592 A052471 A037496 * A180762 A134326 A295546 Adjacent sequences: A355361 A355362 A355363 * A355365 A355366 A355367 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 19 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 04:19 EDT 2024. Contains 375146 sequences. (Running on oeis4.)