login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355359
Coefficients in the expansion of B(x) = 1 / Product_{n>=0} (1 - x^(13*n+2))*(1 - x^(13*n+5))*(1 - x^(13*n+6))*(1 - x^(13*n+7))*(1 - x^(13*n+8))*(1 - x^(13*n+11)).
2
1, 0, 1, 0, 1, 1, 2, 2, 3, 2, 4, 4, 6, 6, 8, 9, 11, 12, 16, 17, 22, 24, 29, 32, 39, 43, 53, 57, 69, 75, 90, 99, 117, 129, 150, 166, 193, 213, 246, 273, 312, 346, 394, 436, 496, 549, 621, 687, 774, 855, 962, 1062, 1192, 1313, 1470, 1618, 1807, 1989, 2214, 2436
OFFSET
0,7
LINKS
Srinivasa Ramanujan, Algebraic relations between certain infinite products, Proceedings of the London Mathematical Society, vol.2, no.18, 1920.
FORMULA
G.f. B(x) = Sum_{n>=0} a(n)*x^n and related function A(x) satisfy the following relations.
(1.a) A(x^3)*B(x) - x^2*A(x)*B(x^3) = 1.
(1.b) A(x)^3*B(x) - x^2*A(x)*B(x)^3 - 3*x*A(x)^2*B(x)^2 = 1.
(2.a) A(x) = 1 / Product_{n>=0} (1 - x^(13*n+1))*(1 - x^(13*n+3))*(1 - x^(13*n+4))*(1 - x^(13*n+9))*(1 - x^(13*n+10))*(1 - x^(13*n+12)).
(2.b) B(x) = 1 / Product_{n>=0} (1 - x^(13*n+2))*(1 - x^(13*n+5))*(1 - x^(13*n+6))*(1 - x^(13*n+7))*(1 - x^(13*n+8))*(1 - x^(13*n+11)).
(3.a) A(x)*B(x) = Product_{n>=1} (1 - x^(13*n))/(1 - x^n), a g.f. of A341714.
(3.b) A(x)/B(x) = Product_{n>=1} 1/(1 - x^n)^Kronecker(13, n), a g.f. of A214157.
(4.a) A(x) = sqrt( Product_{n>=1} (1 - x^(13*n))/(1 - x^n)^(1 + Kronecker(13, n)) ).
(4.b) B(x) = sqrt( Product_{n>=1} (1 - x^(13*n))/(1 - x^n)^(1 - Kronecker(13, n)) ).
(5.a) A(x) = ( Product_{n>=1} (1 - x^(13*n))^3 ) / ( f(-x, -x^12) * f(-x^3, -x^10) * f(-x^4, -x^9) ).
(5.b) B(x) = ( Product_{n>=1} (1 - x^(13*n))^3 ) / ( f(-x^2, -x^11) * f(-x^5, -x^8) * f(-x^6, -x^7) ) .
Formulas (4.*) and (5.*) are derived from formulas given by Michael Somos in A214157, where f(a,b) = Sum_{n=-oo..+oo} a^(n*(n+1)/2) * b^(n*(n-1)/2) is Ramanujan's theta function..
a(n) ~ exp(2*Pi*sqrt(n/13)) / (16 * 13^(1/4) * sin(2*Pi/13) * cos(Pi/26) * cos(3*Pi/26) * n^(3/4)). - Vaclav Kotesovec, Aug 01 2022
EXAMPLE
G.f.: B(x) = 1 + x^2 + x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 2*x^9 + 4*x^10 + 4*x^11 + 6*x^12 + 6*x^13 + 8*x^14 + 9*x^15 + ...
and the related series A(x) begins
A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 8*x^9 + 10*x^10 + 11*x^11 + 15*x^12 + 18*x^13 + 21*x^14 + ... + A355358(n)*x^n + ...
such that A(x) and B(x) satisfy
1 = A(x^3)*B(x) - x^2*A(x)*B(x^3),
and
1 = A(x)^3*B(x) - x^2*A(x)*B(x)^3 - 3*x*A(x)^2*B(x)^2.
Related expansions begin
A(x^3)*B(x) = 1 + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 6*x^9 + 7*x^10 + 10*x^11 + 13*x^12 + 14*x^13 + 20*x^14 + 24*x^15 + ...
A(x)*B(x^3) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 10*x^9 + 13*x^10 + ...
A(x)^3*B(x) = 1 + 3*x + 7*x^2 + 16*x^3 + 34*x^4 + 65*x^5 + 120*x^6 + 213*x^7 + 365*x^8 + 609*x^9 + 994*x^10 + ...
A(x)*B(x)^3 = 1 + x + 4*x^2 + 5*x^3 + 12*x^4 + 18*x^5 + 35*x^6 + 54*x^7 + 94*x^8 + 142*x^9 + 232*x^10 + ...
A(x)^2*B(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 + 185*x^8 + 300*x^9 + 481*x^10 + ...
MATHEMATICA
nmax = 60; CoefficientList[Series[1/Product[(1 - x^(13*n + 2))*(1 - x^(13*n + 5))*(1 - x^(13*n + 6))*(1 - x^(13*n + 7))*(1 - x^(13*n + 8))*(1 - x^(13*n + 11)), {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 01 2022 *)
PROG
(PARI) {a(n) = polcoeff( 1/prod(m=0, n, (1 - x^(13*m+2))*(1 - x^(13*m+5))*(1 - x^(13*m+6))*(1 - x^(13*m+7))*(1 - x^(13*m+8))*(1 - x^(13*m+11)), 1 + x*O(x^n)), n)};
for(n=0, 60, print1(a(n), ", "))
(PARI) {a(n) = polcoeff( sqrt( prod(k=1, n, (1 - x^(13*k))/(1 - x^k)^(1 - kronecker(13, k)), 1 + x*O(x^n)) ), n)};
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 01 2022
STATUS
approved