login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238998
Number of partitions of n that such that no part is a Fibonacci number.
2
1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 2, 4, 4, 6, 5, 9, 8, 11, 11, 16, 16, 22, 22, 29, 31, 40, 42, 54, 57, 71, 77, 95, 103, 127, 137, 165, 182, 218, 238, 285, 313, 369, 408, 479, 530, 619, 684, 794, 883, 1019, 1130, 1304, 1446, 1658, 1843, 2107, 2340, 2670
OFFSET
0,11
LINKS
FORMULA
G.f.: A(x) = sum(1/product(1 - x^c(i))), i >=1, where c(i) are the non-Fibonacci numbers.
EXAMPLE
a(15) counts these partitions: [15], [11,4], [9,6], [7,4,4]; a(16) counts these: [16], [12,4], [10,6], [9,7], [6,6,4], [4,4,4,4].
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(add(
`if`((f-> issqr(f+4) or issqr(f-4))(5*d^2), 0, d),
d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Mar 31 2017
MATHEMATICA
p[n_] := IntegerPartitions[n, All, Complement[Range@n, Fibonacci@Range@15]]; Table[p[n], {n, 0, 20}] (* shows partitions *)
a[n_] := Length@p@n; a /@ Range[0, 80] (* counts partitions *)
(* Second program: *)
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[
If[Function[f, IntegerQ@Sqrt[f+4] || IntegerQ@Sqrt[f-4]][5*d^2], 0, d],
{d, Divisors[j]}]*a[n - j], {j, 1, n}]/n];
a /@ Range[0, 100] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz *)
PROG
(PARI) N=66; q='q+O('q^N); Vec( prod(n=1, 11, 1-q^fibonacci(n+1))/eta(q) ) \\ Joerg Arndt, Mar 11 2014
CROSSREFS
Sequence in context: A117660 A358015 A184198 * A355359 A144369 A033822
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 08 2014
STATUS
approved