Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 05 2021 06:28:50
%S 1,0,0,0,1,0,1,1,1,1,2,2,3,2,4,4,6,5,9,8,11,11,16,16,22,22,29,31,40,
%T 42,54,57,71,77,95,103,127,137,165,182,218,238,285,313,369,408,479,
%U 530,619,684,794,883,1019,1130,1304,1446,1658,1843,2107,2340,2670
%N Number of partitions of n that such that no part is a Fibonacci number.
%H Alois P. Heinz, <a href="/A238998/b238998.txt">Table of n, a(n) for n = 0..10000</a>
%F G.f.: A(x) = sum(1/product(1 - x^c(i))), i >=1, where c(i) are the non-Fibonacci numbers.
%e a(15) counts these partitions: [15], [11,4], [9,6], [7,4,4]; a(16) counts these: [16], [12,4], [10,6], [9,7], [6,6,4], [4,4,4,4].
%p a:= proc(n) option remember; `if`(n=0, 1, add(add(
%p `if`((f-> issqr(f+4) or issqr(f-4))(5*d^2), 0, d),
%p d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..100); # _Alois P. Heinz_, Mar 31 2017
%t p[n_] := IntegerPartitions[n, All, Complement[Range@n, Fibonacci@Range@15]]; Table[p[n], {n, 0, 20}] (* shows partitions *)
%t a[n_] := Length@p@n; a /@ Range[0, 80] (* counts partitions *)
%t (* Second program: *)
%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[
%t If[Function[f, IntegerQ@Sqrt[f+4] || IntegerQ@Sqrt[f-4]][5*d^2], 0, d],
%t {d, Divisors[j]}]*a[n - j], {j, 1, n}]/n];
%t a /@ Range[0, 100] (* _Jean-François Alcover_, Jun 05 2021, after _Alois P. Heinz_ *)
%o (PARI) N=66; q='q+O('q^N); Vec( prod(n=1,11,1-q^fibonacci(n+1))/eta(q) ) \\ _Joerg Arndt_, Mar 11 2014
%Y Cf. A003107, A000045.
%K nonn,easy
%O 0,11
%A _Clark Kimberling_, Mar 08 2014