login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214157
Expansion of (1/x) * (f(-x^2, -x^11) * f(-x^5, -x^8) * f(-x^6, -x^7)) / (f(-x, -x^12) * f(-x^3, -x^10) * f(-x^4, -x^9)) in powers of x where f(, ) is Ramanujan's general theta function.
6
1, 1, 0, 1, 2, 0, -1, 0, -1, -1, 0, -2, 0, 4, 1, -2, 3, 4, -2, -3, -1, -2, -2, -2, -5, 0, 9, 3, -4, 8, 12, -4, -7, -1, -6, -6, -4, -12, -1, 22, 6, -10, 17, 24, -9, -16, -3, -12, -11, -8, -25, -1, 45, 14, -20, 36, 52, -18, -32, -6, -25, -24, -16, -50, -2, 88
OFFSET
-1,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 13 sequence [1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 + v + u*v^3 - u^3*v^2 + 2*u*v * (1 + u - v + u*v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (v^3 - u) * (u^3 - v) - 3*u*v * (1 + u + v) * (u*v - u - v).
G.f.: (1/x) * Product_{k>0} (1 - x^k)^-Kronecker(13, k).
a(n) = A092876(n) + A133099(n) unless n=0.
Convolution inverse of A092876.
EXAMPLE
G.f. = 1/x + 1 + x^2 + 2*x^3 - x^5 - x^7 - x^8 - 2*x^10 + 4*x^12 + x^13 - 2*x^14 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/x Product[ (1 - x^k) ^ -KroneckerSymbol[ 13, k], {k, n+1}], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<-1, 0, n++; polcoeff( prod( k=1, n, (1 - x^k)^-kronecker( 13, k), 1 + x * O(x^n)), n))};
CROSSREFS
Sequence in context: A235924 A097304 A136745 * A246720 A343030 A246690
KEYWORD
sign
AUTHOR
Michael Somos, Jul 05 2012
STATUS
approved