login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214158
Smallest number with n as least nonnegative primitive root, or 0 if no such number exists.
3
1, 2, 3, 4, 0, 6, 41, 22, 0, 0, 313, 118, 4111, 457, 1031, 439, 0, 262, 53173, 191, 107227, 362, 3361, 842, 533821, 0, 12391, 0, 133321, 2906, 124153, 2042, 0, 3062, 48889, 2342, 0, 7754, 55441, 19322, 1373989, 3622, 2494381, 16022, 71761, 613034, 273001, 64682, 823766851, 0, 23126821, 115982, 129361, 29642
OFFSET
0,2
COMMENTS
a(A001597(n)) = 0 for n > 1.
LINKS
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 313
Eric Weisstein's World of Mathematics, Primitive Root
Robert G. Wilson v, Table of n, a(n) for n = 0..205 (contains -1 where a term has not yet been found)
EXAMPLE
a(7) = 22, since 22 has 7 as smallest positive primitive root and no number < 22 has 7 as smallest positive primitive root.
MATHEMATICA
lst2 = {}; r = 47; smallestPrimitiveRoot[n_ /; n <= 1] = 0; smallestPrimitiveRoot[n_] := Block[{pr = PrimitiveRoot[n], g}, If[! NumericQ[pr], g = 0, g = 1; While[g <= pr, If[CoprimeQ[g, n] && MultiplicativeOrder[g, n] == EulerPhi[n], Break[]]; g++]]; g]; lst1 = Union[Flatten@Table[n^i, {i, 2, Log[2, r]}, {n, 2, r^(1/i)}]]; Do[n = 2; If[MemberQ[lst1, l], AppendTo[lst2, 0], While[True, If[smallestPrimitiveRoot[n] == l, AppendTo[lst2, n]; Break[]]; n++]], {l, r}]; Prepend[lst2, 1] (* Most of the code is from Jean-François Alcover *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved