login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214158 Smallest number with n as least nonnegative primitive root, or 0 if no such number exists. 3
1, 2, 3, 4, 0, 6, 41, 22, 0, 0, 313, 118, 4111, 457, 1031, 439, 0, 262, 53173, 191, 107227, 362, 3361, 842, 533821, 0, 12391, 0, 133321, 2906, 124153, 2042, 0, 3062, 48889, 2342, 0, 7754, 55441, 19322, 1373989, 3622, 2494381, 16022, 71761, 613034, 273001, 64682, 823766851, 0, 23126821, 115982, 129361, 29642 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(A001597(n)) = 0 for n > 1.
LINKS
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 313
Eric Weisstein's World of Mathematics, Primitive Root
Robert G. Wilson v, Table of n, a(n) for n = 0..205 (contains -1 where a term has not yet been found)
EXAMPLE
a(7) = 22, since 22 has 7 as smallest positive primitive root and no number < 22 has 7 as smallest positive primitive root.
MATHEMATICA
lst2 = {}; r = 47; smallestPrimitiveRoot[n_ /; n <= 1] = 0; smallestPrimitiveRoot[n_] := Block[{pr = PrimitiveRoot[n], g}, If[! NumericQ[pr], g = 0, g = 1; While[g <= pr, If[CoprimeQ[g, n] && MultiplicativeOrder[g, n] == EulerPhi[n], Break[]]; g++]]; g]; lst1 = Union[Flatten@Table[n^i, {i, 2, Log[2, r]}, {n, 2, r^(1/i)}]]; Do[n = 2; If[MemberQ[lst1, l], AppendTo[lst2, 0], While[True, If[smallestPrimitiveRoot[n] == l, AppendTo[lst2, n]; Break[]]; n++]], {l, r}]; Prepend[lst2, 1] (* Most of the code is from Jean-François Alcover *)
CROSSREFS
Sequence in context: A091703 A004180 A011418 * A054425 A217101 A265516
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 02:50 EDT 2024. Contains 374265 sequences. (Running on oeis4.)