login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214156 Dual to A214094: a(0)=0, a(1)=1; a(n) = a(n-1) + a(n-2) if a(n-1) + a(n-2) is not semiprime; a(n) is minimal prime divisor of a(n-1) + a(n-2) if a(n-1) + a(n-2) is semiprime. 5
0, 1, 1, 2, 3, 5, 8, 13, 3, 16, 19, 5, 24, 29, 53, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 2, 557, 13, 570, 11, 7, 18, 5, 23, 28, 3, 31, 2, 3, 5, 8, 13, 3, 16, 19, 5, 24, 29, 53, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 2, 557, 13, 570, 11, 7, 18 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The sequence has period of length 36: {2,3,5,...,28,3,31} and thus is bounded.

LINKS

Table of n, a(n) for n=0..69.

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

MATHEMATICA

A214156[0]:=0; A214156[1]:=1; A214156[n_] := A214156[n] = If[PrimeOmega[#] == 2, First[Rest[Divisors[#]]], #]& [A214156[n-1] + A214156[n-2]]; Table[A214156[n], {n, 0, 99}] (* Peter J. C. Moses, Feb 18 2013 *)

nxt[{a_, b_}]:={b, If[PrimeOmega[a+b]==2, FactorInteger[a+b][[1, 1]], a+b]}; NestList[nxt, {0, 1}, 70][[All, 1]] (* or *) PadRight[{0, 1, 1}, 70, {28, 3, 31, 2, 3, 5, 8, 13, 3, 16, 19, 5, 24, 29, 53, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 2, 557, 13, 570, 11, 7, 18, 5, 23}] (* Harvey P. Dale, Feb 02 2017 *)

CROSSREFS

Cf. A214094.

Sequence in context: A287533 A072123 A135102 * A078414 A254056 A238948

Adjacent sequences:  A214153 A214154 A214155 * A214157 A214158 A214159

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, Feb 16 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 02:19 EDT 2020. Contains 337164 sequences. (Running on oeis4.)