login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343030
Number of 1-bits in the binary expansion of n which have an odd number of 0-bits at less significant bit positions.
5
0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 2, 3, 0, 0, 1, 2, 0, 1, 1, 2, 1, 2, 0, 1, 2, 0, 3, 4, 0, 1, 0, 1, 1, 0, 2, 3, 0, 1, 1, 2, 1, 1, 2, 3, 1, 0, 2, 3, 0, 2, 1, 2, 2, 3, 0, 1, 3, 0, 4, 5, 0, 0, 1, 2, 0, 1, 1, 2, 1, 2, 0, 1, 2, 0, 3, 4, 0, 1, 1, 2, 1, 1, 2, 3
OFFSET
0,7
COMMENTS
See A343029 for further notes.
FORMULA
a(n) = A343029(n) - A004718(n).
a(n) = A000120(n) - A343029(n), where A000120 is the number of 1-bits in n (binary weight).
a(2*n) = A000120(n) - a(n).
a(2*n+1) = a(n).
G.f. satisfies g(x) = (x-1)*g(x^2) + A000120(x^2).
G.f.: (1/2)* Sum_{k>=0} x^(2^k)*( (1-x^(2^k))/(1-x) - Prod_{j=0..k-1} x^(2^j)-1 )/( 1-x^(2*2^k ) ).
a(2(2^n - 1)) = n. - Michael S. Branicky, Apr 03 2021
EXAMPLE
n = 628 = binary 1001110100
^ ^^^ a(n) = 4
PROG
(PARI) a(n) = my(t=0, ret=0); for(i=0, if(n, logint(n, 2)), if(bittest(n, i), ret+=t, t=!t)); ret;
(Python)
def a(n):
b = bin(n)[2:]
return sum(bi=='1' and b[i:].count('0')%2==1 for i, bi in enumerate(b))
print([a(n) for n in range(87)]) # Michael S. Branicky, Apr 03 2021
CROSSREFS
Cf. A343029, A004718, A000120, A000918 (indices of new highs).
Sequence in context: A136745 A214157 A246720 * A246690 A317748 A090465
KEYWORD
nonn,easy
AUTHOR
Kevin Ryde, Apr 03 2021
STATUS
approved